1.Breeding of Chlorella mutants deficient in chlorophyll synthesis and evaluation of its protein yield and quality.
Xiao CHEN ; Bailong WANG ; Dong WEI
Chinese Journal of Biotechnology 2023;39(3):1247-1259
The aim of this study was to construct Chlorella mutants deficient in chlorophyll synthesis by atmospheric pressure room temperature plasma (ARTP) mutagenesis, and screen novel algal species with very low chlorophyll content which is suitable for protein production by fermentation. Firstly, the lethal rate curve of mixotrophic wild type cells was established by optimizing the mutagenesis treatment time. The mixotrophic cells in early exponential phase were treated by the condition of over 95% lethal rate, and 4 mutants with the visual change of colony color were isolated. Subsequently, the mutants were cultured in shaking flasks heterotrophically for evaluation of their protein production performance. P. ks 4 mutant showed the best performance in Basal medium containing 30 g/L glucose and 5 g/L NaNO3. The protein content and productivity reached 39.25% dry weight and 1.15 g/(L·d), with an amino acid score of 101.34. The chlorophyll a content decreased 98.78%, whereas chlorophyll b was not detected, and 0.62 mg/g of lutein content made the algal biomass appear golden yellow. This work provides a novel germplasm, the mutant P. ks 4 with high yield and high quality, for alternative protein production by microalgal fermentation.
Chlorella/metabolism*
;
Chlorophyll A/metabolism*
;
Plant Breeding
;
Mutagenesis
;
Chlorophyll/metabolism*
;
Biomass
;
Microalgae
2.Comparison of Application of MD-VF-Auto SEM Method and Plankton Gene Multiplex PCR System in the Diagnosis of Drowning.
Jian-Miao ZHANG ; Tian-Chun LIN ; Zhen-Yu LIAO ; Yu-Kun DU ; Zhong-Hao YU ; Jing-Jian LIU ; Sai-Qun WU ; Xiao-Dong KANG ; Qu-Yi XU ; He SHI ; Jian ZHAO ; Chao LIU ; Dang-En GU
Journal of Forensic Medicine 2022;38(1):114-118
OBJECTIVES:
To compare the application effect of microwave digestion - vacuum filtration - automated scanning electron microscopy (MD-VF-Auto SEM) method and plankton gene multiplex PCR system in the diagnosis of drowning.
METHODS:
Lung, liver and kidney tissue of 10 non-drowning cases and 50 drowning cases were prepared for further MD-VF-Auto SEM method analysis and plankton gene multiplex PCR system analysis. The positive detection rate of the two methods in each tissue was calculated.
RESULTS:
The positive rate of the MD-VF-Auto SEM method detecting diatoms in drowning cases was 100%, and few diatoms were detected in the liver and kidney tissues of 6 non-drowning cases. By using the plankton gene multiplex PCR system, the diatom positive rate of drowning cases was 84%, and all the non-drowning cases were negative. There were significant differences in the positive rate of the liver, kidney tissues between MD-VF-Auto SEM method and plankton gene multiplex PCR system (P<0.05), as well as the total positive rate of cases. However, no significant differences were found in the positive rates of lung tissues (P>0.05).
CONCLUSIONS
MD-VF-Auto SEM method is more sensitive than plankton gene multiplex PCR system in diatom test. But the plankton gene multiplex PCR system can also detect plankton other than diatoms. Combination of the two methods can provide a more reliable basis for the diagnosis of drowning.
Diatoms/genetics*
;
Drowning/diagnosis*
;
Humans
;
Liver
;
Lung
;
Microscopy, Electron, Scanning
;
Multiplex Polymerase Chain Reaction
;
Plankton/genetics*
3.Advances in the co-culture of microalgae with other microorganisms and applications.
Chang LI ; Wenxiang PING ; Jingping GE ; Yimeng LIN
Chinese Journal of Biotechnology 2022;38(2):518-530
Intense utilization and mining of fossil fuels for energy production have resulted in environmental pollution and climate change. Compared to fossil fuels, microalgae is considered as a promising candidate for biodiesel production due to its fast growth rate, high lipid content and no occupying arable land. However, monocultural microalgae bear high cost of harvesting, and are prone to contamination, making them incompetent compared with traditional renewable energy sources. Co-culture system induces self-flocculation, which may reduce the cost of microalgae harvesting and the possibility of contamination. In addition, the productivity of lipid and high-value by-products are higher in co-culture system. Therefore, co-culture system represents an economic, energy saving, and efficient technology. This review aims to highlight the advances in the co-culture system, including the mechanisms of interactions between microalgae and other microorganisms, the factors affecting the lipid production of co-culture, and the potential applications of co-culture system. Finally, the prospects and challenges to algal co-culture systems were also discussed.
Biofuels
;
Biomass
;
Coculture Techniques
;
Flocculation
;
Microalgae
4.Tactic movement of microalgae and its application in targeted transport: a review.
Yuanyuan LIU ; Weiyang ZENG ; Ru CHEN ; Yunlong GE ; Lihan ZI ; Jun YANG ; Fantao KONG
Chinese Journal of Biotechnology 2022;38(2):578-591
Microalgae are a group of photosynthetic microorganisms, which have the general characteristics of plants such as photosynthesis, and some species have the ability of movement which resembles animals. Recently, it was reported that microalgae cells can be engineered to precisely deliver medicine-particles and other goods in microfluidic chips. These studies showed great application potential in biomedical treatment and pharmacodynamic analysis, which have become one of the current research hotspots. However, these developments have been rarely reviewed. Here, we summarized the advances in manageable movement exemplified by a model microalgae Chlamydomonas reinhardtii based on its characteristics of chemotaxis, phototaxis, and magnetotaxis. The bottlenecks and prospects in the application of microalgae-based tactic movement were also discussed. This review might be useful for rational design and modification of microalgal manageable movement to achieve targeted transport in medical and other fields.
Chlamydomonas reinhardtii
;
Microalgae
;
Microfluidics
;
Photosynthesis
5.Research progress on the biomedical application of microalgae.
Danni ZHONG ; Min ZHOU ; Chaojie REN
Journal of Zhejiang University. Medical sciences 2021;50(2):261-266
Microalgae is an easy-to-obtain natural biological material with many varieties and abundant natural reserves. Microalgae are rich in natural fluorescein, which can be used as a contrast agent for fluorescence imaging and photoacoustic imaging for medical imaging. With its active surface, microalgae can effectively adsorb functional molecules, metal elements, etc., and have good application prospects in the field of drug delivery. Microalgae can generate oxygen through photosynthesis to increase local oxygen concentration, reverse local hypoxia to enhance the efficacy of hypoxic tumors and promote wound healing. In addition, microalgae have good biocompatibility, and different administration methods have no obvious toxicity. This paper reviews the research progress on the biomedical application of microalgae in bioimaging, drug delivery, hypoxic tumor treatment, wound healing.
Drug Delivery Systems
;
Humans
;
Hypoxia
;
Microalgae
;
Oxygen
;
Wound Healing
7.Application of Chlorophyte ChlB Gene and Cyanophyte NIES Gene in the Detection of Drowning-Related Plankton.
Huan LI ; Qu Yi XU ; Chao LIU ; Cheng XIAO ; Jian ZHAO ; Zhong Hao YU ; Xing Yi YANG ; Yue LI ; Li Hua WAN
Journal of Forensic Medicine 2021;37(1):58-64
Objective To construct a polymerase chain reaction-capillary electrophoresis (PCR-CE) detection method using ChlB gene and NIES gene, investigate the method's specificity and sensitivity, and to evaluate its application value in drowning diagnosis. Methods The specific primers ChlB and NIES were designed for the conserved sequence of chlorophyte ChlB gene and cyanophyte NIES gene in GenBank to construct PCR-CE detection method; 50 species of standard DNA samples were amplified; the sensitivity was determined by gradient concentration detection of positive standard samples; 25 actual cadaver lung tissue samples (drowned: 20, natural death: 5) were detected, and the simultaneous detection results of microwave digestion-vacuum filtration-automated scanning electron microscopy (MD-VF-Auto SEM) were simultaneously compared. Results The minimum DNA detection concentration of primers ChlB and NIES was 0.161 ng and 0.109 ng, respectively, which could specifically amplify chlorophyte (Chlorella pyrenoidosa) and cyanophyte [Microcystis aeruginosa (producing and not producing toxin)] widespread in water. The product fragments were 156 bp and 182 bp, respectively. The results of non-drowning tissues were negative. Conclusion This method has high sensitivity and specificity. It can be applied to the detection of plankton related to drowning and combined with MD-VF-Auto SEM method, can increase the detection range of plankton related to drowning and improve the evidence power of drowning diagnosis.
Chlorella
;
Diatoms/genetics*
;
Drowning/diagnosis*
;
Humans
;
Kidney
;
Liver
;
Lung
;
Plankton/genetics*
8.Effects of substrate on growth and lipid accumulation of Tribonema sp. FACHB-1786.
Ting ZHANG ; Qing HE ; Zijun XU ; Feiya SUO ; Chengwu ZHANG ; Qiang HU
Chinese Journal of Biotechnology 2020;36(11):2478-2493
Filamentous microalga Tribonema sp. has the advantages of highly resistance to zooplankton-predation, easy harvesting, and high cellular lipid content, in particular large amounts of palmitoleic acid (PA) and eicosapentaenoic acid (EPA). Therefore, Tribonema sp. is considered as a promising biomass feedstock to produce biodiesel and high-value products. In this work, we studied the effect of different concentrations of nitrogen (NaNO₃: 255-3 060 mg/L), phosphorus (K₂HPO₄: 4-240 mg/L), iron ((NH₄)₃FeC₁₂H₁₀O₁₄: 0.6-12 mg/L) and magnesium (MgSO₄: 7.5-450 mg/L) on the biomass, lipid content, and fatty acid composition of Tribonema sp. FACHB-1786, aiming at enhancing cell lipid productivity. The growth of Tribonema sp. had a positive correlation with the concentration of magnesium, and the maximum biomass of Tribonema sp. (under the condition of 450 mg/L MgSO₄) was 8.09 g/L, much greater than those reported in previous studies using the same and other Tribonema species under autotrophic conditions. Different nitrogen concentrations exerted no significant effect on algal growth (P > 0.05), but a higher nitrogen concentration resulted in a greater amount of lipid in the cells. The maximum volumetric productivities of total lipids (319. 6 mg/(L·d)), palmitoleic acid (135.7 mg/(L·d)), and eicosapentaenoic acid (24.2 mg/(L·d)) of Tribonema sp. were obtained when the concentrations of NaNO₃, K₂HPO₄, (NH₄)₃FeC₁₂H₁₀O₁₄, and MgSO₄ were 765 mg/L, 80 mg/L, 6 mg/L, and 75 mg/L, respectively. This study will provide a reference for substrate optimization for Tribonema sp. growth and lipid production.
Biofuels
;
Biomass
;
Lipids
;
Microalgae
;
Nitrogen
;
Stramenopiles
9.Marine Healing, but Not Additional Intake of Undaria pinnatifida, Benefits Physical and Emotional Exhaustion Symptoms of Menopause
Hyunju YUN ; Bora LEE ; Sung Jae LEE ; Clara Yongjoo PARK
Clinical Nutrition Research 2020;9(1):1-10
Diet
;
Female
;
Humans
;
Information Services
;
Menopause
;
Mustard Plant
;
Quality of Life
;
Seaweed
;
Undaria
10.Advances in astaxanthin biosynthesis in Haematococcus pluvialis.
Chinese Journal of Biotechnology 2019;35(6):988-997
Astaxanthin is widely applied as a nutraceutical, pharmaceutical, and aquaculture feed additive because of its high antioxidant activity. Haematococcus pluvialis is a microalgal species that can largely accumulate astaxanthin under adverse environmental conditions. Here we review the research progress of astaxanthin biosynthesis in H. pluvialis, including the induction and regulation of massive astaxanthin, the relationship between astaxanthin synthesis, photosynthesis and lipid metabolism.
Chlorophyceae
;
Chlorophyta
;
Microalgae
;
Xanthophylls

Result Analysis
Print
Save
E-mail