1.Difference of lipid-lowering efficacy of "Xinjianqu" before and after fermentation and its mechanism based on LKB1-AMPK pathway and 16S rDNA sequencing technology.
De-Hua LI ; Rui-Sheng WANG ; Zhen-Ling ZHANG ; Jian-Guang ZHU ; Meng-Mei SUN ; Jia QIAO
China Journal of Chinese Materia Medica 2023;48(8):2146-2159
On the basis of establishing the prescription of Xinjianqu and clarifying the increase of the lipid-lowering active ingredients of Xinjianqu by fermentation, this paper further compared the differences in the lipid-lowering effects of Xinjianqu before and after fermentation, and studied the mechanism of Xinjianqu in the treatment of hyperlipidemia. Seventy SD rats were randomly divided into seven groups, including normal group, model group, positive drug simvastatin group(0.02 g·kg~(-1)), and low-dose and high-dose Xinjianqu groups before and after fermentation(1.6 g·kg~(-1) and 8 g·kg~(-1)), with ten rats in each group. Rats in each group were given high-fat diet continuously for six weeks to establish the model of hyperlipidemia(HLP). After successful modeling, the rats were given high-fat diet and gavaged by the corresponding drugs for six weeks, once a day, to compare the effects of Xinjianqu on the body mass, liver coefficient, and small intestine propulsion rate of rats with HLP before and after fermentation. The effects of Xinjianqu before and after fermentation on total cholesterol(TC), triacylglyceride(TG), high-density lipoprotein cholesterol(HDL-C), low-density lipoprotein cholesterol(LDL-C), alanine aminotransferase(ALT), aspartate aminotransferase(AST), blood urea nitrogen(BUN), creatinine(Cr), motilin(MTL), gastrin(GAS), and the Na~+-K~+-ATPase levels were determined by enzyme-linked immunosorbent assay(ELISA). The effects of Xinjianqu on liver morphology of rats with HLP were investigated by hematoxylin-eosin(HE) staining and oil red O fat staining. The effects of Xinjianqu on the protein expression of adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK), phosphorylated AMPK(p-AMPK), liver kinase B1(LKB1), and 3-hydroxy-3-methylglutarate monoacyl coenzyme A reductase(HMGCR) in liver tissues were investigated by immunohistochemistry. The effects of Xinjianqu on the regulation of intestinal flora structure of rats with HLP were studied based on 16S rDNA high-throughput sequencing technology. The results showed that compared with those in the normal group, rats in the model group had significantly higher body mass and liver coefficient(P<0.01), significantly lower small intestine propulsion rate(P<0.01), significantly higher serum levels of TC, TG, LDL-C, ALT, AST, BUN, Cr, and AQP2(P<0.01), and significantly lower serum levels of HDL-C, MTL, GAS, Na~+-K~+-ATP levels(P<0.01). The protein expression of AMPK, p-AMPK, and LKB1 in the livers of rats in the model group was significantly decreased(P<0.01), and that of HMGCR was significantly increased(P<0.01). In addition, the observed_otus, Shannon, and Chao1 indices were significantly decreased(P<0.05 or P<0.01) in rat fecal flora in the model group. Besides, in the model group, the relative abundance of Firmicutes was reduced, while that of Verrucomicrobia and Proteobacteria was increased, and the relative abundance of beneficial genera such as Ligilactobacillus and Lachnospiraceae_NK4A136_group was reduced. Compared with the model group, all Xinjianqu groups regulated the body mass, liver coefficient, and small intestine index of rats with HLP(P<0.05 or P<0.01), reduced the serum levels of TC, TG, LDL-C, ALT, AST, BUN, Cr, and AQP2, increased the serum levels of HDL-C, MTL, GAS, and Na~+-K~+-ATP, improved the liver morphology, and increased the protein expression gray value of AMPK, p-AMPK, and LKB1 in the liver of rats with HLP and decreased that of LKB1. Xinjianqu groups could regulate the intestinal flora structure of rats with HLP, increased observed_otus, Shannon, Chao1 indices, and increased the relative abundance of Firmicutes, Ligilactobacillus(genus), Lachnospiraceae_NK4A136_group(genus). Besides, the high-dose Xinjianqu-fermented group had significant effects on body mass, liver coefficient, small intestine propulsion rate, and serum index levels of rats with HLP(P<0.01), and the effects were better than those of Xinjianqu groups before fermentation. The above results show that Xinjianqu can improve the blood lipid level, liver and kidney function, and gastrointestinal motility of rats with HLP, and the improvement effect of Xinjianqu on hyperlipidemia is significantly enhanced by fermentation. The mechanism may be related to AMPK, p-AMPK, LKB1, and HMGCR protein in the LKB1-AMPK pathway and the regulation of intestinal flora structure.
Rats
;
Animals
;
AMP-Activated Protein Kinases/metabolism*
;
Rats, Sprague-Dawley
;
Cholesterol, LDL
;
Fermentation
;
Aquaporin 2/metabolism*
;
Lipid Metabolism
;
Liver
;
Lipids
;
Hyperlipidemias/genetics*
;
Adenosine Triphosphate/pharmacology*
;
Diet, High-Fat/adverse effects*
2.Spleen deficiency and phlegm dampness syndrome model in rats treated by Citri Reticulatae Pericarpium based on metabolomics.
Bei WU ; Meng-Yuan SHEN ; Hong-Ping CHEN ; You-Ping LIU ; Fu WANG ; Lin CHEN
China Journal of Chinese Materia Medica 2022;47(15):4136-4147
The present study analyzed the effect of Citri Reticulatae Pericarpium on endogenous metabolites in spleen deficiency and phlegm dampness syndrome by metabolomics, and explored the underlying mechanism of Citri Reticulatae Pericarpium in the treatment of spleen deficiency and phlegm dampness syndrome.The model of spleen deficiency and phlegm dampness syndrome was induced in rats by the multi-factor modeling method.The intervention effects of Citri Reticulatae Pericarpium on rats with spleen deficiency and phlegm dampness syndrome were preliminarily evaluated by observing the pathological changes of rat liver tissues and measuring the plasma content of pathological and biochemical indexes such as triglyceride(TG), total cholesterol(TC), low-density lipoprotein cholesterol(LDL-C), and high-density lipoprotein cholesterol(HDL-C).Immunohistochemistry was used to detect the expression of AQP2 in the kidney, AQP3 in the colon, and AQP5 in the submandibular gland, and the effect of Citri Reticulatae Pericarpium on aquaporin expression in rats with spleen deficiency and phlegm dampness syndrome was evaluated.Furthermore, UHPLC-ESI-MS/MS was used to analyze the metabolic profiles of rat plasma samples.Multiple methods, such as principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA) were used for pattern recognition.Differential metabolites were screened out by t-test and variable importance in projection(VIP), followed by pathway analysis based on MetaboAnalyst 5.0.As revealed by experimental results, Citri Reticulatae Pericarpium could improve the pathological changes of liver tissues, increase the levels of HDL-C in the plasma, reduce the levels of TC, TG, and LDL-C, and enhance the expression of AQP2 in the kidney, AQP3 in the colon, and AQP5 in the submandibular gland of rats with spleen deficiency and phlegm dampness syndrome.In addition, 87 differential metabolites of spleen deficiency and phlegm dampness syndrome were screened out by UHPLC-ESI-MS/MS(the levels of 39 metabolites increased significantly and the levels of 48 metabolites decreased significantly), with the representatives of glycine, L-isoleucine, N-acetyl-L-tyrosine, xanthine, hypoxanthine, and trigonelline.The differential metabolites were mainly enriched in the pathways of steroid hormone biosynthesis, linoleic acid metabolism, and purine metabolism.This study distinguished and revealed the characteristic metabolic pattern of spleen deficiency and phlegm dampness syndrome by metabolomics.The preliminary construction of the OPLS-DA model provides an objective basis for the differentiation of spleen deficiency and phlegm dampness syndrome in traditional Chinese medi-cine(TCM), as well as ideas and methods for exploring the biological basis of TCM syndrome from the molecular level and the overall level.
Animals
;
Aquaporin 2
;
Cholesterol, LDL
;
Citrus/chemistry*
;
Drugs, Chinese Herbal
;
Metabolomics
;
Rats
;
Spleen
;
Tandem Mass Spectrometry
3.Role of prostaglandin E2 in the modulation of renal water transport.
Acta Physiologica Sinica 2021;73(4):681-689
Prostaglandin E2 (PGE2), a bioactive lipid mediator, is one of the most important locally acting factors involved in a variety of physiological and pathophysiological processes. PGE2 binds with four EP receptors (EP1-4) to activate G protein-coupled receptor signaling responses. Recent functional and molecular studies have revealed that PGE2 plays an essential role in regulation of renal fluid transport via a variety of mechanisms. The water balance mainly depends on the regulation of aquaporin-2 (AQP2) by arginine vasopressin (AVP) in renal collecting duct principal cells. In recent years, increasing evidence suggests that PGE2 plays an important role in renal water reabsorption in the collecting ducts. In this paper, we reviewed the role of PGE2 and its receptors in the regulation of water reabsorption in the kidney, which may provide a new therapeutic strategy for many diseases especially nephrogenic diabetes insipidus.
Aquaporin 2/metabolism*
;
Biological Transport
;
Diabetes Insipidus, Nephrogenic
;
Dinoprostone
;
Humans
;
Water/metabolism*
4.Dryness comparison of different fractions of Aurantii Fructus extract on normal mice and gastrointestinal motility disorder rats and spectrum-dryness study.
Ri-Fa QIAO ; Min-Yong ZHONG ; Min ZHANG ; Lin YANG ; Xi-Qin DU ; Fu-Lin TUO ; Jin-Bin YUAN
China Journal of Chinese Materia Medica 2021;46(20):5291-5303
Aurantii Fructus is a commonly used qi-regulating medicinal herb in China. Both traditional Chinese medicine theory and modern experimental research demonstrate that Aurantii Fructus has dryness effect, the material basis of which remains unclear. In recent years, spectrum-effect relationship has been widely employed in the study of active ingredients in Chinese medicinal herbs, the research ideas and methods of which have been constantly improved. Based on the idea of spectrum-effect study, the ultra-high perfor-mance liquid chromatography-quadrupole-time of flight mass spectrometry(UHPLC-Q-TOF-MS) fingerprints of different fractions of Aurantii Fructus extract were established for the identification of total components. Then, the dryness effects of the fractions on normal mice and gastrointestinal motility disorder(GMD) rats were systematically compared. Finally, principal component analysis(PCA), Pearson bivariate correlation analysis and orthogonal partial least squares analysis(OPLS) were integrated to identify the dryness components of Aurantii Fructusextract. The results showed that narirutin, naringin, naringenin, poncirin, oxypeucedanin, and eriodictyol-7-O-glucoside had significant correlations with and contributed to the expression of AQP2 in kidney, AQP3 in colon, and AQP5 in submandibular gland, which were the main dryness components in Aurantii Fructus.
Animals
;
Aquaporin 2
;
Chromatography, High Pressure Liquid
;
Citrus
;
Drugs, Chinese Herbal
;
Gastrointestinal Motility
;
Medicine, Chinese Traditional
;
Mice
;
Rats
5.Clinical characteristics and molecular genetics of seven neonates with congenital nephrogenic diabetes insipidus.
Xiaoyun DONG ; Huiru DONG ; Wenqing KANG ; Hong XIONG ; Bangli XU ; Fatao LIN ; Xuan ZHENG
Chinese Journal of Medical Genetics 2021;38(12):1185-1189
OBJECTIVE:
To explore the clinical characteristics, genetic basis and clinical treatment of seven neonates with congenital nephrogenic diabetes insipidus (NDI).
METHODS:
Clinical data of the patients were collected. High-throughput sequencing was carried out to detect potential variants. Sanger sequencing was used to verify the results.
RESULTS:
The patients were all males, with the age of onset being 10 to 21 days. All patients were admitted to the hospital for intermittent fever as the first symptom during the neonatal period. Additional symptoms had included polydipsia and polyuria. After the treatment, 5 patients had recovered, the remainders still had NDI symptoms and developmental retardation. Five children were found to harbor pathogenic variants of the AVPR2/AQP2 gene, which included one in-frame mutation of c.645_646insGCACCTACCCTGGGTATCGCC, two missense mutations of c.541C>T and c.419C>A, and two hemizygous deletions of the AVPR2/AQP2 gene. Among these, two were unreported previously. Cases 6 and 7 were a pair of twins. Both had carried homozygous missense variants of c.538G>A of the AVPR2/AQP2 gene, which was known to be pathogenic.
CONCLUSION
AVPR2/AQP2 is the main pathogenic gene for congenital NDI, for which two novel pathogenic variants have been discovered in this study. Above results have provided a basis for clinical diagnosis and genetic counseling for the affected pedigrees.
Aquaporin 2/genetics*
;
Child
;
Diabetes Insipidus, Nephrogenic/genetics*
;
Diabetes Mellitus
;
Humans
;
Infant, Newborn
;
Male
;
Molecular Biology
;
Mutation
;
Pedigree
;
Receptors, Vasopressin/genetics*
6.New insights into the transcriptional regulation of aquaporin-2 and the treatment of X-linked hereditary nephrogenic diabetes insipidus
Kidney Research and Clinical Practice 2019;38(2):145-158
The kidney collecting duct (CD) is a tubular segment of the kidney where the osmolality and final flow rate of urine are established, enabling urine concentration and body water homeostasis. Water reabsorption in the CD depends on the action of arginine vasopressin (AVP) and a transepithelial osmotic gradient between the luminal fluid and surrounding interstitium. AVP induces transcellular water reabsorption across CD principal cells through associated signaling pathways after binding to arginine vasopressin receptor 2 (AVPR2). This signaling cascade regulates the water channel protein aquaporin-2 (AQP2). AQP2 is exclusively localized in kidney connecting tubules and CDs. Specifically, AVP stimulates the intracellular translocation of AQP2-containing vesicles to the apical plasma membrane, increasing the osmotic water permeability of CD cells. Moreover, AVP induces transcription of the Aqp2 gene, increasing AQP2 protein abundance. This review provides new insights into the transcriptional regulation of the Aqp2 gene in the kidney CD with an overview of AVP and AQP2. It summarizes current therapeutic approaches for X-linked nephrogenic diabetes insipidus caused by AVPR2 gene mutations.
Aquaporin 2
;
Arginine Vasopressin
;
Body Water
;
Cell Membrane
;
Diabetes Insipidus, Nephrogenic
;
Gene Expression Regulation
;
Homeostasis
;
Kidney
;
Kidney Tubules, Collecting
;
Osmolar Concentration
;
Permeability
;
Phenobarbital
;
Receptors, Vasopressin
;
Water
7.Notch signaling in the collecting duct regulates renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction in mice.
Arum CHOI ; Sun Ah NAM ; Wan Young KIM ; Sang Hee PARK ; Hyang KIM ; Chul Woo YANG ; Jin KIM ; Yong Kyun KIM
The Korean Journal of Internal Medicine 2018;33(4):774-782
BACKGROUND/AIMS: Mind bomb-1 (Mib1) encodes an E3 ubiquitin ligase, which is required for the initiation of Notch signaling. Recently, it was demonstrated that the renal collecting duct plays an important role in renal fibrosis. Here, we investigated the role of Notch signaling in renal fibrosis using conditional knockout mice with the specific ablation of Mib1 in renal collecting duct principal cells. METHODS: Mib1-floxed mice (Mib1f/f ) were crossed with aquaporin 2 (AQP2)-Cre mice in order to generate principal cell-specific Mib1 knockout mice (Mib1f/f :AQP2-Cre+). Unilateral ureteral obstruction (UUO) was performed, and mice were sacrificed 7 days after UUO. RESULTS: After performing the UUO, renal tubulointerstitial fibrosis and the expression of transforming growth factor β were markedly enhanced in the obstructed kidneys of Mib1f/f mice compared with the sham-operated kidney of Mib1f/f mice. These changes were shown to be even more pronounced in the obstructed kidneys of Mib1f/f :AQP2-Cre+ mice than in those of the Mib1f/f mice . Furthermore, the number of TUNNEL-positive cells in renal collecting duct was higher in the obstructed kidneys of Mib1f/f :AQP2-Cre+ mice than in the kidneys of Mib1f/f mice. CONCLUSIONS: Notch signaling in the renal collecting duct plays an important role in the regulation of renal tubulointerstitial fibrosis and apoptosis after UUO.
Animals
;
Apoptosis
;
Aquaporin 2
;
Fibrosis*
;
Kidney
;
Kidney Tubules, Collecting
;
Mice*
;
Mice, Knockout
;
Transforming Growth Factors
;
Ubiquitin-Protein Ligases
;
Ureter*
;
Ureteral Obstruction*
8.Effect of Zhenwu Tang on regulating of "AVP-V2R-AQP2" pathway in NRK-52E cells.
Xiao-Jie ZHOU ; Yu-Ting BAO ; Hong-Shu CHEN ; Ling XUAN ; Xue-Ming CHEN ; Jie-Ying ZHANG ; Yuan-Xiao YANG ; Chang-Yu LI
China Journal of Chinese Materia Medica 2018;43(3):603-608
This study was aimed to investigate the effect and mechanism of Zhenwu Tang on AVP-V2R-AQP2 pathway in NRK-52E cells . Forty eight male SD rats were randomly divided into eight groups with 6 animals in each group. Distilled water or 22.68 g·kg⁻¹·d⁻¹ Zhenwu Tang(calculated by raw drug dosage meter) was given by gavage. Blood samples were collected by cardiac puncture, and the medicated serum was centrifuged from the blood by 3 000 r·min⁻¹. NRK-52E cells were treated with different medicated serum or dDAVP. The condition of cell proliferation was detected by RTCA. The distribution of V2R and AQP2 in cells were detected by immunofluorescence. The expression of V2R, PKA and AQP2 were detected by Western blot and AQP2 mRNA level was detected by real-time PCR. Results showed that the level of AQP2 mRNA(<0.01) and protein expression of V2R, PKA and AQP2(<0.05, <0.01, <0.05) of Z7d group which was treated with Zhenwu Tang medicated serum for 24 h were significantly higher than that of normal rat serum group. And the expression level of V2R, p-AQP2 and AQP2(<0.01, <0.05, <0.01) of Z7d+dDAVP group were significantly increased comparing to normal rat serum group. The results indicate that the applying of Zhenwu Tang medicated serum could increase the expression level of V2R, PKA and AQP2 which exist in AVP-V2R-AQP2 pathway in NRK-52E, and there is synergistic effect between Zhenwu Tang medicated serum and dDAVP. So the pathway of AVP-V2R-AQP2 may be one of the mechanism for which Zhenwu Tang regulate balance of water transportation.
Animals
;
Aquaporin 2
;
metabolism
;
Cell Line
;
Cyclic AMP-Dependent Protein Kinases
;
metabolism
;
Drugs, Chinese Herbal
;
pharmacology
;
Kidney
;
cytology
;
Male
;
RNA, Messenger
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Vasopressin
;
metabolism
;
Signal Transduction
9.A Non-woven Path: Electrospun Poly(lactic acid) Scaffolds for Kidney Tissue Engineering.
Todd P BURTON ; Anthony CALLANAN
Tissue Engineering and Regenerative Medicine 2018;15(3):301-310
Chronic kidney disease is a major global health problem affecting millions of people; kidney tissue engineering provides an opportunity to better understand this disease, and has the capacity to provide a cure. Two-dimensional cell culture and decellularised tissue have been the main focus of this research thus far, but despite promising results these methods are not without their shortcomings. Polymer fabrication techniques such as electrospinning have the potential to provide a non-woven path for kidney tissue engineering. In this experiment we isolated rat primary kidney cells which were seeded on electrospun poly(lactic acid) scaffolds. Our results showed that the scaffolds were capable of sustaining a multipopulation of kidney cells, determined by the presence of: aquaporin-1 (proximal tubules), aquaporin-2 (collecting ducts), synaptopodin (glomerular epithelia) and von Willebrand factor (glomerular endothelia cells), viability of cells appeared to be unaffected by fibre diameter. The ability of electrospun polymer scaffold to act as a conveyor for kidney cells makes them an ideal candidate within kidney tissue engineering; the non-woven path provides benefits over decellularised tissue by offering a high morphological control as well as providing superior mechanical properties with degradation over a tuneable time frame.
Animals
;
Aquaporin 2
;
Cell Culture Techniques
;
Global Health
;
Kidney*
;
Polymers
;
Rats
;
Renal Insufficiency, Chronic
;
Tissue Engineering*
;
von Willebrand Factor
10.Effect of Diet and Water Intake on Aquaporin 2 Function.
Jun Mo KIM ; Tae Hee KIM ; Tong WANG
Childhood Kidney Diseases 2016;20(1):11-17
Appropriate control of diet and water intake is important for maintaining normal blood pressure, fluid and electrolyte homeostasis in the body. It is relatively understood that the amount of sodium and potassium intake directly affects blood pressure and regulates ion transporters; Na and K channel functions in the kidney. However, little is known about whether diet and water intake regulates Aquaporin (AQP) function. AQPs, a family of aquaporin proteins with different types being expressed in different tissues, are important for water absorption by the cell. Water reabsorption is a passive process driven by osmotic gradient and water permeability is critical for this process. In most of the nephron, however, water reabsorption is unregulated and coupled to solute reabsorption, such as AQP1 mediated water absorption in the proximal tubule. AQP2 is the only water channel founded so far that can be regulated by hormones in the kidney. AQP2 expressed in the apical membrane of the principal cells in the collecting tubule can be regulated by vasopressin (antidiuretic hormone) controlling the final volume of urine excretion. When vasopressin binds to its receptor on the collecting duct cells, it stimulates the translocation of AQP2 to the membrane, leading to increased water absorption via this AQP2 water channel. However, some studies also indicated that the AQP2 is also been regulated by vasopressin independent mechanism. This review is focused on the regulation of AQP2 by diet and the amount of water intake on salt and water homeostasis.
Absorption
;
Aquaporin 2*
;
Arginine Vasopressin
;
Blood Pressure
;
Diet*
;
Drinking*
;
Homeostasis
;
Humans
;
Ion Transport
;
Kidney
;
Membranes
;
Nephrons
;
Osmolar Concentration
;
Permeability
;
Potassium
;
Sodium
;
Vasopressins
;
Water*

Result Analysis
Print
Save
E-mail