1.PDCD6 Promotes Hepatocellular Carcinoma Cell Proliferation and Metastasis through the AKT/GSK3β/β-catenin Pathway.
Shi Yuan WEN ; Yan Tong LIU ; Bing Yan WEI ; Jie Qiong MA ; Yan Yan CHEN
Biomedical and Environmental Sciences 2023;36(3):241-252
OBJECTIVE:
Programmed cell death 6 (PDCD6), a Ca 2+-binding protein, has been reported to be aberrantly expressed in all kinds of tumors. The aim of this study was to explore the role and mechanism of PDCD6 in hepatocellular carcinomas (HCCs).
METHODS:
The expression levels of PDCD6 in liver cancer patients and HCC cell lines were analyzed using bioinformatics and Western blotting. Cell viability and metastasis were determined by methylthiazol tetrazolium (MTT) and transwell assays, respectively. And Western blotting was used to test related biomarkers and molecular pathway factors in HCC cell lines. LY294002, a PI3K inhibitor inhibiting AKT, was used to suppress the AKT/GSK3β/β-catenin pathway to help evaluate the role of this pathway in the HCC carcinogenesis associated with PDCD6.
RESULTS:
The analysis of The Cancer Genome Atlas Database suggested that high PDCD6 expression levels were relevant to liver cancer progression. This was consistent with our finding of higher levels of PDCD6 expression in HCC cell lines than in normal hepatocyte cell lines. The results of MTT, transwell migration, and Western blotting assays revealed that overexpression of PDCD6 positively regulated HCC cell proliferation, migration, and invasion. Conversely, the upregulation of PDCD6 expression in the presence of an AKT inhibitor inhibited HCC cell proliferation, migration, and invasion. In addition, PDCD6 promoted HCC cell migration and invasion by epithelial-mesenchymal transition. The mechanistic investigation proved that PDCD6 acted as a tumor promoter in HCC through the AKT/GSK3β/β-catenin pathway, increasing the expression of transcription factors and cellular proliferation and metastasis.
CONCLUSION
PDCD6 has a tumor stimulative role in HCC mediated by AKT/GSK3β/β-catenin signaling and might be a potential target for HCC progression.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/pathology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
beta Catenin/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Cell Line
;
Cell Proliferation
;
Cell Line, Tumor
;
Gene Expression Regulation, Neoplastic
;
Calcium-Binding Proteins/metabolism*
;
Apoptosis Regulatory Proteins/genetics*
2.Targeted inhibition of osteoclastogenesis reveals the pathogenesis and therapeutics of bone loss under sympathetic neurostress.
Bingdong SUI ; Jin LIU ; Chenxi ZHENG ; Lei DANG ; Ji CHEN ; Yuan CAO ; Kaichao ZHANG ; Lu LIU ; Minyan DANG ; Liqiang ZHANG ; Nan CHEN ; Tao HE ; Kun XUAN ; Fang JIN ; Ge ZHANG ; Yan JIN ; Chenghu HU
International Journal of Oral Science 2022;14(1):39-39
Sympathetic cues via the adrenergic signaling critically regulate bone homeostasis and contribute to neurostress-induced bone loss, but the mechanisms and therapeutics remain incompletely elucidated. Here, we reveal an osteoclastogenesis-centered functionally important osteopenic pathogenesis under sympatho-adrenergic activation with characterized microRNA response and efficient therapeutics. We discovered that osteoclastic miR-21 was tightly regulated by sympatho-adrenergic cues downstream the β2-adrenergic receptor (β2AR) signaling, critically modulated osteoclastogenesis in vivo by inhibiting programmed cell death 4 (Pdcd4), and mediated detrimental effects of both isoproterenol (ISO) and chronic variable stress (CVS) on bone. Intriguingly, without affecting osteoblastic bone formation, bone protection against ISO and CVS was sufficiently achieved by a (D-Asp8)-lipid nanoparticle-mediated targeted inhibition of osteoclastic miR-21 or by clinically relevant drugs to suppress osteoclastogenesis. Collectively, these results unravel a previously underdetermined molecular and functional paradigm that osteoclastogenesis crucially contributes to sympatho-adrenergic regulation of bone and establish multiple targeted therapeutic strategies to counteract osteopenias under stresses.
Adrenergic Agents/pharmacology*
;
Apoptosis Regulatory Proteins/pharmacology*
;
Bone Diseases, Metabolic/metabolism*
;
Humans
;
Liposomes
;
MicroRNAs/genetics*
;
Nanoparticles
;
Osteoclasts
;
Osteogenesis/physiology*
;
RNA-Binding Proteins/pharmacology*
3.Expression of miR-126 in Diffuse Large B-Cell Lymphoma and Its Biological Function.
Chen QIU ; Qiao-Hua ZHANG ; Gang-Gang WANG
Journal of Experimental Hematology 2022;30(5):1415-1422
OBJECTIVE:
To investigate the expression of miR-126 in diffuse large B-cell lymphoma (DLBCL) tissues and its biological function.
METHODS:
The lymphoma tissues of 46 DLBCL patients in our hospital were selected as the research object, and the lymph node hyperplasia tissue of 31 patients with reactive hyperplasia were selected as controls. The expression level of miR-126 in the patients' tissues was detected by real-time fluorescent quantitative PCR (RT-qPCR), and the correlation of miR-126 expression with the pathological characteristics and prognosis of the patients was analyzed. The DLBCL cell line SU-DHL-4 was transfected with miR-126 inhibitor and its negative control (NC inhibitor) or miR-126 mimics and its negative control (NC mimics). RT-qPCR assay was used to detect the expression level of miR-126 in cells; MTT method was used to detect cell proliferation activity; single clone formation test was used to detect cells colony-forming ability; Annexin V/PI double staining assay was used to detect cell apoptosis; Transwell test was used to detect cell migration and invasion ability; the expression levels of apoptosis-related proteins cleaved-Caspase-3, Bcl-2 and Bax were detected by Western blot.
RESULTS:
miR-126 was highly expressed in lymphoma tissues of DLBCL patients, and its expression level was significantly correlated with Hans type, IPI score and Ann-Arbor stage of DLBCL patients (P<0.05). Kaplan-Meier survival analysis showed that the survival rate of DLBCL patients with high expression of miR-126 was significantly lower than that of patients with low expression (P<0.05). Compared with the NC mimics group, the miR-126 expression level, cell proliferation rate, number of colony-forming units, migration and invasion ability, and Bcl-2 protein expression level in the miR-126 mimics group were significantly increased (P<0.05), but the cells apoptotic rate, cleaved-Caspase-3 and Bax protein expression levels were significantly reduced (P<0.05). Compared with the NC inhibitor group, the miR-126 expression level, cell proliferation rate, number of colony-forming units, migration and invasion ability, and Bcl-2 protein expression level in the miR-126 inhibitor group were significantly reduced (P<0.05), but the cells apoptosis rate, cleaved-Caspase-3 and Bax protein expression levels were significantly increased (P<0.05).
CONCLUSION
miR-126 is highly expressed in lymphoma tissues of DLBCL patients and its expression level is related to the poor prognosis of patients. miR-126 can promote DLBCL cell proliferation, invasion and migration, and inhibit cell apoptosis.
Annexin A5/metabolism*
;
Apoptosis
;
Apoptosis Regulatory Proteins
;
Caspase 3/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Hyperplasia
;
Lymphoma, Large B-Cell, Diffuse/genetics*
;
MicroRNAs/metabolism*
;
bcl-2-Associated X Protein/metabolism*
4.Lrrc34 Is Highly Expressed in SSCs and Is Necessary for SSC Expansion In Vitro.
Jin Huan OU ; Yi Ran LI ; Zhi Peng WANG ; Cheng JIN ; Kai LI ; Yan LU ; Ding Feng ZOU ; Peng Yu LI ; Meng Zhen LI ; Shi Ying MIAO ; Lin Fang WANG ; Wei SONG
Chinese Medical Sciences Journal 2020;35(1):20-30
Objective To discover critical genes contributing to the stemness and maintenance of spermatogonial stem cells (SSCs) and provide new insights into the function of the leucine-rich repeat (LRR) family member Lrrc34 (leucine-rich repeat-containing 34) in SSCs from mice. Methods Bioinformatic methods, including differentially expressed gene (DEG), gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, were used to uncover latent pluripotency-related genes. Reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence analyses were utilized to verify the mRNA and protein expression levels, respectively. RNA interference of Lrrc34 using siRNA was performed to detect its transient impact on SSCs. Results Eight DEGs between ID4-EGFP+ (G) and ID4-EGFP+/TSPAN8High (TH), eight DEGs between G and ID4-EGFP+/TSPAN8Low (TL) and eleven DEGs between TH and TL were discovered, and eleven protein-protein interaction (PPI) modules were found to be significant in the PPI network of DEGs. One of the DEGs, Lrrc34, was selected as a potential pluripotency-related gene due to its differential expression among ID4-EGFP+ spermatogonia subsets and its interaction with fibroblast growth factor 2 in the fifth module. Immunofluorescence experiments exhibited specific expression of Lrrc34 in a subpopulation of undifferentiated spermatogonia marked by LIN28A, and RT-PCR experiments confirmed the high expression of Lrrc34 in SSCs from P7 and adult mice. The transient knockdown of Lrrc34 in SSCs resulted in reduced colony sizes and significant changes in the transcriptome and apoptotic pathways. Conclusion Lrrc34 is highly expressed in mouse SSCs and is required for SSC proliferation in vitro through effects on transcriptome and signaling transduction pathways.
Animals
;
Apoptosis/genetics*
;
Cell Proliferation/genetics*
;
Cells, Cultured
;
Gene Expression Profiling/methods*
;
Gene Ontology
;
Gene Regulatory Networks
;
Humans
;
Male
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
RNA Interference
;
Repressor Proteins/metabolism*
;
Signal Transduction/genetics*
;
Stem Cells/metabolism*
5.Effects of Transcription Factor MZF-1 on Transcriptive Regulation of Acute Monocytic Leukemia-related Gene MLAA-34.
Bo LEI ; Wang-Gang ZHANG ; Ai-Li HE ; Yin-Xia CHEN ; Xing-Meim CAO ; Peng-Yu ZHANG ; Wan-Hong ZHAO ; Jian-Li WANG ; Jie LIU ; Xiao-Rong MA ; Yan-Ping ZHANG ; Hui ZHANG
Journal of Experimental Hematology 2019;27(5):1463-1468
OBJECTIVE:
To investigate the transcriptional regulation of transcription factor MZF-1 on acute monocytic leukemia-related gene MLAA-34.
METHODS:
The effect of MZF-1 on the transcriptional activity of MLAA-34 gene promoter was analyzed by luciferase reporter gene detection system and site-directed mutation technique. The EMSA and ChIP assay were used to verify whether MZF-1 directly and specifically binds to the core region of MLAA-34 promoter. The over-expression vector and interference vector of MZF-1 were constructed to transfect U937 cells, and RT-PCR and Western blot were used to detect the transcription and expression changes of MLAA-34 gene.
RESULTS:
The transcription factor MZF-1 had a regulatory effect on MLAA-34 gene expression, and the relative luciferase activity was decreased after MZF-1 binding point mutation (P<0.01). EMSA and ChIP experiments demonstrated that MZF-1 could directly bind to MLAA-34 promoter and play a regulatory role. In the over-expression test, the increase of MZF-1 could up-regulate the expression of MLAA-34 (P<0.05). In the interference test, the decrease of MZF-1 could down-regulate the expression of MLAA-34 (P<0.05).
CONCLUSION
Transcription factor MZF-1 can bind to the transcriptional regulatory region on the promoter of MLAA-34 gene and promote the transcription of MLAA-34 gene in acute monocytic leukemia.
Antigens, Neoplasm
;
genetics
;
Apoptosis Regulatory Proteins
;
genetics
;
Gene Expression Regulation, Neoplastic
;
Genes, Reporter
;
Hepatocyte Nuclear Factor 1-alpha
;
Humans
;
Kruppel-Like Transcription Factors
;
metabolism
;
Leukemia, Monocytic, Acute
;
Promoter Regions, Genetic
;
Transcription, Genetic
6.Suppression of miR-30a/HMGA2-mediated autophagy in osteosarcoma cells impacts chemotherapeutics-induced apoptosis.
Qin XIA ; Jiangdong NI ; Jun HUANG ; Baiqi PAN ; Mingming YAN ; Wenzhao LI
Journal of Central South University(Medical Sciences) 2019;44(7):757-766
To investigate the effect of miR-30a/HMGA2-mediated autophagy in osteosarcoma cells on apoptosis induced by chemotherapeutics.
Methods: A total of 30 osteosarcoma tissues of sensitive and resistant to chemotherapeutics were divided into a chemotherapy-sensitive group and a chemotherapy-resistant group. The mRNA expression levels of miR-30a and high mobility group protein A2 (HMGA2) in the chemotherapy-sensitive group and the chemotherapy-resistant group, and the mRNA expression levels of miR-30a in osteosarcoma U2-OS cells treated by cisplatin, doxorubicin and methotrexate at different concentrations were detected by real-time PCR. The expression levels of autophagy related protein Beclin 1, microtubule associated protein 1 light chain 3B (LC3B) and autophagy factor P62 were detected by Western blotting. The osteosarcoma U2-OS cells were transfected with miR-30a mimics and miR-30a inhibitors to construct a miR-30a high expression group, a miR-30a low expression group and a control group. The expression levels of Beclin 1, LC3B and P62 in osteosarcoma U2-OS cells after treatment of cisplatin and doxorubicin in these 3 groups were detected by Western blotting; the level of autophagy was detected by monodansylcada (MDC) staining; the level of ROS was detected by dihydroethidium (DHE); the level of cell surviving rate was detected by cell counting kit-8 (CCK-8); the level of apoptosis was detected by annexin APC/PI double staining; the level of mitochondria oxidative damage was detected by mitochondrial membrane potential assay kit with JC-1 (JC-1 method). The interaction between miR-30a and HMGA2 was detected by dual luciferase reporter assay. The osteosarcoma U2-OS cells were transfected with HMGA2 mimics and HMGA2-shRNA to construct a high HMGA2 group, a low HMGA2 group, and a control group. The expression levels of Beclin 1, LC3B and P62 in osteosarcoma U2-OS cells after the treatment of cisplatin were detected by Western blotting.
Results: The level of miR-30a in the chemotherapy-resistant tissues was significantly lower than that in the chemotherapy-sensitive tissues (P<0.05), and the expression of HMGA2 was opposite comparing to that of miR-30a (P<0.05). After the treatment by low concentration (5 μmol/L) of chemotherapeutics, the level of miR-30a was down-regulated in osteosarcoma U2-OS cells, accompanied with up-regulation of Beclin 1 and LC3B (P<0.01) and down-regulation of P62 (P<0.01). Compared with the control group, the expression levels of Beclin 1 and LC3B were significantly decreased (P<0.05), and the expression level of P62 was significantly increased (P<0.05) in the miR-30a high expression group, which was opposite in the miR-30a low expression group. In the miR-30a high expression group treated by chemotherapeutics, the level of autophagy and the cell survival rate were lower than those in group with low expression of miR-30a, while the levels of ROS, the mitochondrial oxidative damage and the apoptosis were higher than those in group with low expression of miR-30a (all P<0.05). The targeting interaction between HMGA2 and miR-30a were verified by dual luciferase reporter assay. Compared with the control group, the expression levels of Beclin 1 and LC3B were significantly increased (P<0.05), and the expression level of P62 was significantly decreased (P<0.05) in the HMGA2 high expression group, which was opposite in the HMGA2 low expression group.
Conclusion: Suppression of miR-30a/HMGA2-mediated autophagy in osteosarcoma cells is likely to enhance the therapeutic effect of chemotherapeutics.
Apoptosis
;
Apoptosis Regulatory Proteins
;
Autophagy
;
Beclin-1
;
Bone Neoplasms
;
Cell Line, Tumor
;
HMGA2 Protein
;
metabolism
;
Humans
;
MicroRNAs
;
genetics
;
Osteosarcoma
7.AATYK is a Novel Regulator of Oligodendrocyte Differentiation and Myelination.
Chunxia JIANG ; Wanqing YANG ; Zhihong FAN ; Peng TENG ; Ruyi MEI ; Junlin YANG ; Aifen YANG ; Mengsheng QIU ; Xiaofeng ZHAO
Neuroscience Bulletin 2018;34(3):527-533
Oligodendrocytes (OLs) are myelinating glial cells that form myelin sheaths around axons to ensure rapid and focal conduction of action potentials. Here, we found that an axonal outgrowth regulatory molecule, AATYK (apoptosis-associated tyrosine kinase), was up-regulated with OL differentiation and remyelination. We therefore studied its role in OL differentiation. The results showed that AATYK knockdown inhibited OL differentiation and the expression of myelin genes in vitro. Moreover, AATYK-deficiency maintained the proliferation status of OLs but did not affect their survival. Thus, AATYK is essential for the differentiation of OLs.
Animals
;
Animals, Newborn
;
Apoptosis Regulatory Proteins
;
genetics
;
metabolism
;
Cell Differentiation
;
drug effects
;
physiology
;
Cell Proliferation
;
drug effects
;
genetics
;
Cells, Cultured
;
Cuprizone
;
toxicity
;
Demyelinating Diseases
;
chemically induced
;
metabolism
;
pathology
;
Embryo, Mammalian
;
Gene Expression Regulation, Developmental
;
genetics
;
Ki-67 Antigen
;
metabolism
;
Mice
;
Mice, Inbred C57BL
;
Myelin Basic Protein
;
metabolism
;
Myelin Proteolipid Protein
;
metabolism
;
Myelin Sheath
;
drug effects
;
metabolism
;
Oligodendroglia
;
drug effects
;
metabolism
;
Protein-Tyrosine Kinases
;
genetics
;
metabolism
;
RNA, Small Interfering
;
genetics
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
8.Effect of Foxo3a gene over-expression on the development of rat ovarian granulose cells and in prevention of cisplatin-induced ovarian damage in rats.
Yue YANG ; Li-Hong FANG ; Xue-Feng WANG
Journal of Southern Medical University 2016;36(6):796-801
OBJECTIVETo evaluate the effect of Foxo3a gene over-expression on the development of rat ovarian granulosa cells and in prevention of cisplatin-induced ovarian damage in rats.
METHODSRat ovarian granulose cells released mechanically from the ovaries were cultured in vitro and identified with HE staining and immunohistochemical staining for FSHR. A recombinant adenovirus carrying Foxo3a gene was constructed for infecting the granulose cells, and the cell growth and expressions of cyclin D1, p27, Bax, and Bim were detected; the cell apoptosis and cell cycle changes were detected using Hoechst/PI 33342 staining and flow cytometry, respectively. The transfected cells were challenged with cisplatin and the cell apoptosis was detected with flow cytometry.
RESULTSOver 90% of the cultured cells survived and contained more than 95% ovarian granulose cells. Infection of the cells with the recombinant adenovirus resulted in over-expressions of Foxo3a at the mRNA and protein levels at 36 h and 48 h after the infection, respectively. The infected cells showed suppressed proliferation, increased apoptotic rate and cell cycle arrest in G1 phase with increased expressions of Bim, p27, and cyclin D1 but without significant changes in Bax expression. Cisplatin exposure caused a significantly higher apoptosis rate in the infected cells than in the control cells.
CONCLUSIONOver-expression of Foxo3a gene can promote granulose cell apoptosis by increasing Bim expression and cause cell cycle arrest in G1 phase by increasing cyclin D1 and p27 expressions, but can not prevent the toxic effects of cisplatin on ovarian granulosa cells.
Animals ; Apoptosis ; Apoptosis Regulatory Proteins ; metabolism ; Bcl-2-Like Protein 11 ; Cell Cycle Checkpoints ; Cell Proliferation ; Cells, Cultured ; Cisplatin ; adverse effects ; Cyclin D1 ; metabolism ; Cyclin-Dependent Kinase Inhibitor p27 ; metabolism ; Female ; Forkhead Box Protein O3 ; Forkhead Transcription Factors ; genetics ; metabolism ; Gene Expression ; Granulosa Cells ; cytology ; drug effects ; Membrane Proteins ; metabolism ; Proto-Oncogene Proteins ; metabolism ; Rats ; Transfection ; bcl-2-Associated X Protein ; metabolism
9.Antiapoptotic Effect of the Leukemia Associated Gene MLAA-34 in HeLa Cells.
Peng-Yu ZHANG ; Xuan ZHAO ; Wen-Juan ZHANG ; Wang-Gang ZHANG ; Yin-Xia CHEN
Journal of Experimental Hematology 2016;24(2):363-368
OBJECTIVETo study the antiapoptotic effect of leukemia-associated gene MLAA-34 in HeLa cells.
METHODSThe MLAA-34 recombinant lentiviral expression vector was constructed, and the stably transfected HeLa cell line with high expression of MLAA-34 was set up; As(2)O(3) was used to induce apoptosis; the MTT assay, colony formation test and flow cytometry were used to detect the ability of cell proliferation, colong formation, apoptosis and cell cycle changes respectively.
RESULTSAfter treatment with As(2)O(3), the survival rate of HeLa cells with MLAA-34 overexpression was significantly higher than that of the control cells, and the colony formation ability of MLAA-34 significantly increased, and the high expression of MLAA-34 gene significantly decreased the apoptosis rate of HeLa cells, and decreased the proportion of G(2)/M phase cells.
CONCLUSIONThe leukemia-associated gene MLAA-34 has been comfirmed to show antiapoptotic effect in HeLa cells which are induced by As(2)O(3).
Antigens, Neoplasm ; genetics ; metabolism ; Apoptosis ; Apoptosis Regulatory Proteins ; genetics ; metabolism ; Arsenicals ; Cell Cycle ; Cell Proliferation ; HeLa Cells ; Humans ; Lentivirus ; Oxides ; Transfection
10.Poly(ADP-ribosyl)ation of Apoptosis Antagonizing Transcription Factor Involved in Hydroquinone-Induced DNA Damage Response.
Xiao Xuan LING ; Jia Xian LIU ; Lin YUN ; Yu Jun DU ; Shao Qian CHEN ; Jia Long CHEN ; Huan Wen TANG ; Lin Hua LIU
Biomedical and Environmental Sciences 2016;29(1):80-84
The molecular mechanism of DNA damage induced by hydroquinone (HQ) remains unclear. Poly(ADP-ribose) polymerase-1 (PARP-1) usually works as a DNA damage sensor, and hence, it is possible that PARP-1 is involved in the DNA damage response induced by HQ. In TK6 cells treated with HQ, PARP activity as well as the expression of apoptosis antagonizing transcription factor (AATF), PARP-1, and phosphorylated H2AX (γ-H2AX) were maximum at 0.5 h, 6 h, 3 h, and 3 h, respectively. To explore the detailed mechanisms underlying the prompt DNA repair reaction, the above indicators were investigated in PARP-1-silenced cells. PARP activity and expression of AATF and PARP-1 decreased to 36%, 32%, and 33%, respectively, in the cells; however, γ-H2AX expression increased to 265%. Co-immunoprecipitation (co-IP) assays were employed to determine whether PARP-1 and AATF formed protein complexes. The interaction between these proteins together with the results from IP assays and confocal microscopy indicated that poly(ADP-ribosyl)ation (PARylation) regulated AATF expression. In conclusion, PARP-1 was involved in the DNA damage repair induced by HQ via increasing the accumulation of AATF through PARylation.
Antioxidants
;
toxicity
;
Apoptosis Regulatory Proteins
;
genetics
;
metabolism
;
Cell Line
;
DNA Damage
;
drug effects
;
Gene Expression Regulation
;
drug effects
;
Gene Silencing
;
Histones
;
genetics
;
metabolism
;
Humans
;
Hydroquinones
;
toxicity
;
Poly (ADP-Ribose) Polymerase-1
;
Poly(ADP-ribose) Polymerases
;
genetics
;
metabolism
;
Protein Transport
;
Repressor Proteins
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail