1.Tumor cell lysate with low content of HMGB1 enhances immune response of dendritic cells against lung cancer in mice.
Zhongwu PAN ; Siqi LI ; Yaohui WANG ; Haijun LIU ; Lin GUI ; Bohan DONG
Journal of Southern Medical University 2023;43(6):906-914
		                        		
		                        			OBJECTIVE:
		                        			To assess the effect of tumor cell lysate (TCL) with low high-mobility group B1 (HMGB1) content for enhancing immune responses of dendritic cells (DCs) against lung cancer.
		                        		
		                        			METHODS:
		                        			TCLs with low HMGB1 content (LH-TCL) and normal HMGB1 content (NH-TCL) were prepared using Lewis lung cancer (LLC) cells in which HMGB1 was inhibited with 30 nmol/L glycyrrhizic acid (GA) and using LLC cells without GA treatment, respectively. Cultured mouse DCs were exposed to different doses of NH-TCL and LH-TCL, using PBS as the control. Flow cytometry was used to detect the expressions of CD11b, CD11c and CD86 and apoptosis of the stimulated DCs, and IL-12 levels in the cell cultures were detected by ELISA. Mouse spleen cells were co-cultured with the stimulated DCs, and the activation of the spleen cells was assessed by detecting CD69 expression using flow cytometry; TNF-β production in the spleen cells was detected with ELISA. The spleen cells were then co-cultured with LLC cells at the effector: target ratios of 5:1, 10:1 and 20:1 to observe the tumor cell killing. In the animal experiment, C57/BL6 mouse models bearing subcutaneous LLC xenograft received multiple injections with the stimulated DCs, and the tumor growth was observed.
		                        		
		                        			RESULTS:
		                        			The content of HMGB1 in the TCL prepared using GA-treated LLC cells was significantly reduced (P < 0.01). Compared with NH-TCL, LH-TCL showed a stronger ability to reduce apoptosis (P < 0.001) and promote activation and IL- 12 production in the DCs. Compared with those with NH-TCL stimulation, the DCs stimulated with LH-TCL more effectively induced activation of splenic lymphocytes and enhanced their anti-tumor immunity (P < 0.05). In the cell co-cultures, the spleen lymphocytes activated by LH-TCL-stimulated DCs showed significantly enhanced LLC cell killing activity (P < 0.01). In the tumor-bearing mice, injections of LH-TCL-stimulated DCs effectively activated host anti-tumor immunity and inhibited the growth of the tumor xenografts (P < 0.05).
		                        		
		                        			CONCLUSION
		                        			Stimulation of the DCs with LH-TCL enhances the anti-tumor immune activity of the DCs and improve the efficacy of DCbased immunotherapy for LLC in mice.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Dendritic Cells/immunology*
		                        			;
		                        		
		                        			Glycyrrhizic Acid/pharmacology*
		                        			;
		                        		
		                        			HMGB1 Protein
		                        			;
		                        		
		                        			Lung Neoplasms/immunology*
		                        			
		                        		
		                        	
2.Regulatory Mechanism of Mangiferin Combined with Bortezomib on Malignant Biological Behavior of Burkitt Lymphoma and Its Effect on Expression of CXC Chemokine Receptors.
Zhi-Min YAN ; Yan-Quan LIU ; Qing-Lin XU ; Jie LIN ; Xin LIU ; Qiu-Ping ZHU ; Xin-Ji CHEN ; Ting-Bo LIU ; Xiao-Lan LIAN
Journal of Experimental Hematology 2023;31(5):1394-1402
		                        		
		                        			OBJECTIVE:
		                        			To analyze the effects of mangiferin combined with bortezomib on the proliferation, invasion, apoptosis and autophagy of human Burkitt lymphoma Raji cells, as well as the expression of CXC chemokine receptors (CXCRs) family, and explore the molecular mechanism between them to provide scientific basis for basic research and clinical work of Burkitt lymphoma.
		                        		
		                        			METHODS:
		                        			Raji cells were intervened with different concentrations of mangiferin and bortezomib alone or in combination, then cell proliferation was detected by CCK-8 assay, cell invasion ability was detected by Transwell chamber method, cell apoptosis was detected by Annexin V/PI double-staining flow cytometry, apoptosis, autophagy and Akt/mTOR pathway protein expression were detected by Western blot, and the expression changes of CXCR family was detected by real-time quantitative PCR (RT-qPCR).
		                        		
		                        			RESULTS:
		                        			Different concentrations of mangiferin intervened Raji cells for different time could inhibit cell viability in a concentration- and time-dependent manner (r =-0.682, r =-0.836). When Raji cells were intervened by combination of mangiferin and bortezomib, compared with single drug group, the proliferation and invasion abilities were significantly decreased, while the apoptosis level was significantly increased (P <0.01). Mangiferin combined with bortezomib could significantly up-regulate the expression of pro-apoptotic protein Bax and down-regulate the expression of anti-apoptotic protein Bcl-2 after intervention in Raji cells. Caspase-3 was also hydrolyzed and activated, and then induced the apoptosis of Raji cells. Mangiferin combined with bortezomib could up-regulate the expression of LC3Ⅱ protein in Raji cells, and the ratio of LC3Ⅱ/LC3Ⅰ in cells was significantly up-regulated compared with single drug or control group (P <0.01). Mangiferin combined with bortezomib could significantly inhibit the phosphorylation levels of Akt and mTOR, inhibit the proliferation and invasion of Raji cells by inhibiting Akt/mTOR pathway, and induce cell autophagy and apoptosis. Mangiferin and bortezomib could down-regulate the expressions of CXCR4 and CXCR7 mRNA after single-agent intervention in Raji cells, and the down-regulations of CXCR4 and CXCR7 mRNA expression were more significant when the two drugs were combined (P <0.01). Mangiferin alone or combined with bortezomib had no significant effect on CXCR5 mRNA expression in Raji cells (P >0.05), while the combination of the two drugs could down-regulate the expression of CXCR3 (P <0.05).
		                        		
		                        			CONCLUSION
		                        			Mangiferin combined with bortezomib can synergistically inhibit the proliferation and invasion of Raji cells, and induce autophagy and apoptosis. The mechanism may be related to the inhibition of Akt/mTOR signaling pathway, down-regulation of anti-apoptotic protein Bcl-2 and up-regulation of pro-apoptotic protein Bax, and the inhibition of the expression of CXCR family.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Antineoplastic Agents/therapeutic use*
		                        			;
		                        		
		                        			Apoptosis/drug effects*
		                        			;
		                        		
		                        			Apoptosis Regulatory Proteins/immunology*
		                        			;
		                        		
		                        			Autophagy/immunology*
		                        			;
		                        		
		                        			bcl-2-Associated X Protein/immunology*
		                        			;
		                        		
		                        			Bortezomib/therapeutic use*
		                        			;
		                        		
		                        			Burkitt Lymphoma/immunology*
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation/drug effects*
		                        			;
		                        		
		                        			Drug Therapy, Combination
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-bcl-2
		                        			;
		                        		
		                        			Receptors, CXCR/immunology*
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			TOR Serine-Threonine Kinases
		                        			;
		                        		
		                        			Xanthones/therapeutic use*
		                        			
		                        		
		                        	
3.TRIM35 mediates protection against influenza infection by activating TRAF3 and degrading viral PB2.
Nan SUN ; Li JIANG ; Miaomiao YE ; Yihan WANG ; Guangwen WANG ; Xiaopeng WAN ; Yuhui ZHAO ; Xia WEN ; Libin LIANG ; Shujie MA ; Liling LIU ; Zhigao BU ; Hualan CHEN ; Chengjun LI
Protein & Cell 2020;11(12):894-914
		                        		
		                        			
		                        			Tripartite motif (TRIM) family proteins are important effectors of innate immunity against viral infections. Here we identified TRIM35 as a regulator of TRAF3 activation. Deficiency in or inhibition of TRIM35 suppressed the production of type I interferon (IFN) in response to viral infection. Trim35-deficient mice were more susceptible to influenza A virus (IAV) infection than were wild-type mice. TRIM35 promoted the RIG-I-mediated signaling by catalyzing Lys63-linked polyubiquitination of TRAF3 and the subsequent formation of a signaling complex with VISA and TBK1. IAV PB2 polymerase countered the innate antiviral immune response by impeding the Lys63-linked polyubiquitination and activation of TRAF3. TRIM35 mediated Lys48-linked polyubiquitination and proteasomal degradation of IAV PB2, thereby antagonizing its suppression of TRAF3 activation. Our in vitro and in vivo findings thus reveal novel roles of TRIM35, through catalyzing Lys63- or Lys48-linked polyubiquitination, in RIG-I antiviral immunity and mechanism of defense against IAV infection.
		                        		
		                        		
		                        		
		                        			A549 Cells
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Apoptosis Regulatory Proteins/immunology*
		                        			;
		                        		
		                        			DEAD Box Protein 58/immunology*
		                        			;
		                        		
		                        			Dogs
		                        			;
		                        		
		                        			HEK293 Cells
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Influenza A Virus, H1N1 Subtype/immunology*
		                        			;
		                        		
		                        			Madin Darby Canine Kidney Cells
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Knockout
		                        			;
		                        		
		                        			Orthomyxoviridae Infections/pathology*
		                        			;
		                        		
		                        			Proteolysis
		                        			;
		                        		
		                        			RAW 264.7 Cells
		                        			;
		                        		
		                        			Signal Transduction/immunology*
		                        			;
		                        		
		                        			THP-1 Cells
		                        			;
		                        		
		                        			TNF Receptor-Associated Factor 3/immunology*
		                        			;
		                        		
		                        			Ubiquitination/immunology*
		                        			;
		                        		
		                        			Viral Proteins/immunology*
		                        			
		                        		
		                        	
4.Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics.
Protein & Cell 2020;11(10):707-722
		                        		
		                        			
		                        			The 2019 novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has occurred in China and around the world. SARS-CoV-2-infected patients with severe pneumonia rapidly develop acute respiratory distress syndrome (ARDS) and die of multiple organ failure. Despite advances in supportive care approaches, ARDS is still associated with high mortality and morbidity. Mesenchymal stem cell (MSC)-based therapy may be an potential alternative strategy for treating ARDS by targeting the various pathophysiological events of ARDS. By releasing a variety of paracrine factors and extracellular vesicles, MSC can exert anti-inflammatory, anti-apoptotic, anti-microbial, and pro-angiogenic effects, promote bacterial and alveolar fluid clearance, disrupt the pulmonary endothelial and epithelial cell damage, eventually avoiding the lung and distal organ injuries to rescue patients with ARDS. An increasing number of experimental animal studies and early clinical studies verify the safety and efficacy of MSC therapy in ARDS. Since low cell engraftment and survival in lung limit MSC therapeutic potentials, several strategies have been developed to enhance their engraftment in the lung and their intrinsic, therapeutic properties. Here, we provide a comprehensive review of the mechanisms and optimization of MSC therapy in ARDS and highlighted the potentials and possible barriers of MSC therapy for COVID-19 patients with ARDS.
		                        		
		                        		
		                        		
		                        			Adoptive Transfer
		                        			;
		                        		
		                        			Alveolar Epithelial Cells
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Betacoronavirus
		                        			;
		                        		
		                        			Body Fluids
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			CD4-Positive T-Lymphocytes
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Clinical Trials as Topic
		                        			;
		                        		
		                        			Coinfection
		                        			;
		                        		
		                        			prevention & control
		                        			;
		                        		
		                        			therapy
		                        			;
		                        		
		                        			Coronavirus Infections
		                        			;
		                        		
		                        			complications
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Endothelial Cells
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Extracorporeal Membrane Oxygenation
		                        			;
		                        		
		                        			Genetic Therapy
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Genetic Vectors
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Immunity, Innate
		                        			;
		                        		
		                        			Inflammation Mediators
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Lung
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Mesenchymal Stem Cell Transplantation
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Mesenchymal Stem Cells
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Multiple Organ Failure
		                        			;
		                        		
		                        			etiology
		                        			;
		                        		
		                        			prevention & control
		                        			;
		                        		
		                        			Pandemics
		                        			;
		                        		
		                        			Pneumonia, Viral
		                        			;
		                        		
		                        			complications
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Respiratory Distress Syndrome, Adult
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			therapy
		                        			;
		                        		
		                        			Translational Medical Research
		                        			
		                        		
		                        	
5.Research advances in immune tolerance of allogeneic cell transplantation in preterm infants.
Chinese Journal of Contemporary Pediatrics 2018;20(4):338-340
		                        		
		                        			
		                        			Preterm infants are a special group, and related severe neurological, respiratory, and digestive disorders have high disability/fatality rates. Allogeneic cell transplantation may be an effective method for the prevention and treatment of these diseases. At present, animal studies have been conducted for allogeneic cell transplantation in the treatment of hypoxic-ischemic encephalopathy, bronchopulmonary dysplasia, and necrotizing enterocolitis. The main difficulty of this technique is graft-versus-host reaction (GVHR), and successful induction of immune tolerance needs to be achieved in order to solve this problem. This article reviews the research advances in immune tolerance of allogeneic cell transplantation in preterm infants.
		                        		
		                        		
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Cell Transplantation
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			Cytokines
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Graft vs Host Reaction
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Immune Tolerance
		                        			;
		                        		
		                        			Infant, Newborn
		                        			;
		                        		
		                        			Infant, Premature
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Transplantation, Homologous
		                        			
		                        		
		                        	
6.Inactivated Sendai Virus Induces ROS-dependent Apoptosis and Autophagy in Human Prostate Cancer Cells.
Miao QIAN ; Hai Ming TAN ; Ning YU ; Tao WANG ; Quan ZHANG
Biomedical and Environmental Sciences 2018;31(4):280-289
OBJECTIVEThe current study aims to investigate the effect of Hemagglutinating virus of Japan envelope (HVJ-E) on induction of apoptosis and autophagy in human prostate cancer PC3 cells, and the underlying mechanisms.
METHODSPC3 cells were treated with HVJ-E at various multiplicity of infection (MOI), and the generated reactive oxygen species (ROS), cell viability, apoptosis, and autophagy were detected, respectively. Next, the role of ROS played in the regulation of HVJ-E-induced apoptosis and autuphagy in PC3 cells were analysed. In the end, the relationship between HVJ-E-induced apoptosis and autuophagy was investigated by using rapamycin and chloroquine.
RESULTSFlow cytometry assay revealed that HVJ-E treatment induced dose-dependent apoptosis and that the JNK and p38 MAPK signaling pathways were involved in HVJ-E-induced apoptosis in PC3 cells. In addition, HVJ-E was able to induce autophagy in PC3 cells via the class III PI3K/beclin-1 pathway. The data also implyed that HVJ-E-triggered autophagy and apoptosis were ROS dependent. When ROS was blocked with N-acetylcysteine (NAC), HVJ-E-induced LC3-II conversion and apoptosis were reversed. Interestingly, HVJ-E-induced apoptosis was significantly increased by an inducer of autophagy, rapamycin pretreatment, both in vitro and in vivo.
CONCLUSIONHVJ-E exerts anticancer effects via autophagic cell death in prostate cancer cells.
Apoptosis ; physiology ; Autophagy ; physiology ; Cell Line, Tumor ; Cell Survival ; Humans ; Male ; Oncolytic Virotherapy ; Prostatic Neoplasms ; metabolism ; Reactive Oxygen Species ; metabolism ; Sendai virus ; immunology ; physiology ; Virus Inactivation
7.Feiji Recipe inhibits the growth of lung cancer by modulating T-cell immunity through indoleamine-2,3-dioxygenase pathway in an orthotopic implantation model.
Bin LUO ; Zu-Jun QUE ; Zhi-Yi ZHOU ; Qing WANG ; Chang-Sheng DONG ; Yi JIANG ; Bing HU ; Hui SHI ; Yu JIN ; Jian-Wen LIU ; He-Gen LI ; Lin WANG ; Jian-Hui TIAN
Journal of Integrative Medicine 2018;16(4):283-289
OBJECTIVEEscape from the body's immune response is a basic characteristic of lung cancer, and indoleamine-2,3-dioxygenase (IDO) plays a key role in mediating immune escape of non-small-cell lung cancer, which leads to recurrence and metastasis. Feiji Recipe, a compound Chinese herbal medicine, has the effect of stabilizing lesions and prolonging survival in patients with lung cancer. The purpose of this study was to investigate the mechanisms underlying the anticancer properties of Feiji Recipe.
METHODSAn orthotopic transplant model of mouse Lewis lung cancer, with stable expression of IDO gene, was established in C57BL/6 mice. Optical imaging was used to observe the effects of Feiji Recipe in the treatment of lung cancer in vivo. The effects of Feiji Recipe on the proliferation of mouse Lewis lung cancer cell line 2LL, 2LL-enhanced green fluorescent protein (2LL-EGFP) and 2LL-EGFP-IDO were investigated, and the apoptosis of T-cells was examined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide using flow cytometry. Chemical composition of Feiji Recipe was validated by high-performance liquid chromatography.
RESULTSCompared to the control group, the survival of animals treated with Feiji Recipe was significantly prolonged (P = 0.0074), and the IDO protein level decreased (P = 0.0072); moreover, the percentages of CD4CD25 T-cells and Foxp3 T-cells were significantly decreased (P < 0.05). The molecular mechanism of Feiji Recipe against lung cancer may relate to the regulation of immune cells, such as T-cells and regulatory T-cells.
CONCLUSIONThe molecular mechanism of Feiji Recipe in treatment of lung cancer is to restore the function of T-cells in the cancer microenvironment through interfering with the IDO pathway.
Animals ; Apoptosis ; drug effects ; Carcinoma, Lewis Lung ; drug therapy ; enzymology ; immunology ; physiopathology ; Cell Proliferation ; drug effects ; Disease Models, Animal ; Drugs, Chinese Herbal ; administration & dosage ; Growth Inhibitors ; administration & dosage ; Humans ; Indoleamine-Pyrrole 2,3,-Dioxygenase ; genetics ; immunology ; Lung Neoplasms ; drug therapy ; enzymology ; immunology ; physiopathology ; Male ; Mice ; Mice, Inbred C57BL ; T-Lymphocytes, Regulatory ; drug effects ; immunology
8.Activation of phagocytosis by immune checkpoint blockade.
Chia-Wei LI ; Yun-Ju LAI ; Jennifer L HSU ; Mien-Chie HUNG
Frontiers of Medicine 2018;12(4):473-480
		                        		
		                        			
		                        			Inhibition of macrophage-mediated phagocytosis has emerged as an essential mechanism for tumor immune evasion. One mechanism inhibiting the innate response is the presence of the macrophage inhibitory molecule, signal regulatory protein-α (SIRPα), on tumor-associated macrophages (TAMs) and its cognate ligand cluster of differentiation 47 (CD47) on tumor cells in the tumor microenvironment. On the basis of a recently discovered programmed death protein 1 (PD-1) in TAMs, we discuss the potential inhibitory receptors that possess new functions beyond T cell exhaustion in this review. As more and more immune receptors are found to be expressed on TAMs, the corresponding therapies may also stimulate macrophages for phagocytosis and thereby provide extra anti-tumor benefits in cancer therapy. Therefore, identification of biomarkers and combinatorial therapeutic strategies, have the potential to improve the efficacy and safety profiles of current immunotherapies.
		                        		
		                        		
		                        		
		                        			Antigens, Surface
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Apoptosis Regulatory Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Immunotherapy
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Neoplasms
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			therapy
		                        			;
		                        		
		                        			Phagocytosis
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Treatment Outcome
		                        			;
		                        		
		                        			Tumor Microenvironment
		                        			;
		                        		
		                        			immunology
		                        			
		                        		
		                        	
9.Wolves Trapped in the NETs–The Pathogenesis of Lupus Nephritis.
Journal of Rheumatic Diseases 2018;25(2):81-99
		                        		
		                        			
		                        			Systemic lupus erythematous (SLE) is a systemic autoimmune disease with multi-organ inflammation caused by the production of pathogenic autoantibodies and immune complexes reflecting a global loss of tolerance. Lupus nephritis (LN) is present in approximately 60% of SLE patients and is considered a major predictor of a poor prognosis. To date, many studies utilizing genomics, transcriptomics, epigenetics, metabolomics, and microbiome have been conducted on a range of animal models and lupus patients to understand the pathogenesis of SLE and LN. Collectively, these studies support the concept that LN is caused by increased cell death, which has not been properly dealt with; abnormal innate immunity; hyperactive adaptive immunity; and genetic variants triggered by a range of environmental factors. This review summarizes the results from studies that contributed strongly to elucidating the pathogenesis of SLE and LN, highlighting the immunological and non-immunological mechanisms.
		                        		
		                        		
		                        		
		                        			Adaptive Immunity
		                        			;
		                        		
		                        			Allergy and Immunology
		                        			;
		                        		
		                        			Antigen-Antibody Complex
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Autoantibodies
		                        			;
		                        		
		                        			Autoimmune Diseases
		                        			;
		                        		
		                        			Cell Death
		                        			;
		                        		
		                        			Epigenomics
		                        			;
		                        		
		                        			Genomics
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Immunity, Innate
		                        			;
		                        		
		                        			Inflammation
		                        			;
		                        		
		                        			Lupus Nephritis*
		                        			;
		                        		
		                        			Lymphocytes
		                        			;
		                        		
		                        			Metabolomics
		                        			;
		                        		
		                        			Microbiota
		                        			;
		                        		
		                        			Models, Animal
		                        			;
		                        		
		                        			Prognosis
		                        			;
		                        		
		                        			Wolves*
		                        			
		                        		
		                        	
10.Research advances in mesenchymal stem cell-derived exosomes in treatment of brain injury.
Chinese Journal of Contemporary Pediatrics 2017;19(12):1285-1290
		                        		
		                        			
		                        			Mesenchymal stem cell (MSC) transplantation is considered one of the most promising therapeutic strategies for the repair of brain injuries and plays an important role in various links of nerve repair. Recent studies have shown that MSC-derived exosomes may dominate the repair of brain injuries and help to promote angiogenesis, regulate immunity, inhibit apoptosis, and repair the nerves, and therefore, they have a great potential in the treatment of brain injuries in neonates. With reference to these studies, this article reviews the mechanism of action of exosomes in the repair of brain injuries and related prospects and challenges, in order to provide new directions for the treatment of brain injuries in neonates with stem cells.
		                        		
		                        		
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Brain Injuries
		                        			;
		                        		
		                        			therapy
		                        			;
		                        		
		                        			Exosomes
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Inflammation
		                        			;
		                        		
		                        			prevention & control
		                        			;
		                        		
		                        			Mesenchymal Stem Cell Transplantation
		                        			;
		                        		
		                        			Neovascularization, Physiologic
		                        			;
		                        		
		                        			T-Lymphocytes
		                        			;
		                        		
		                        			immunology
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail