1.Research progress on chemical constituents and pharmacological effects of Glechomae Herba and prediction of its Q-markers.
Qian ZHANG ; Zhu-Zhen HAN ; Li-Hua GU ; Zheng-Tao WANG
China Journal of Chinese Materia Medica 2023;48(8):2041-2058
Glechomae Herba, the dried aerial part of Glechoma longituba(Labiatae), has the effects of promoting urination, draining dampness, and relieving stranguria. It has received wide attention in recent years owing to the satisfactory efficacy on lithiasis. Amid the in-depth chemical and pharmacological research, it has been found that Glechomae Herba has antibacterial, anti-inflammatory, antioxidant, antithrombotic, hepatoprotective, cholagogic, antitumor, hypoglycemic, and lipid-lowering effects. The main chemical constituents are volatile oils, flavonoids, terpenoids, phenylpropanoids, and organic acids. This paper summarized the chemical constituents and pharmacological effects of Glechomae Herba. Based on genetic relationship of plants, the characteristics, efficacy, and pharmacokinetics of the chemical constituents, and the potential of these constituents as quality markers(Q-markers), it was summed up that ursolic acid, caffeic acid, rosmarinic acid, luteolin-7-O-diglucuronide, apigenin, apigenin-7-O-diglucuronide, apigetrin, and glechone can be the candidate Q-markers of Glechomae Herba.
Apigenin
;
Plant Extracts/pharmacology*
;
Lamiaceae
;
Drugs, Chinese Herbal/pharmacology*
;
Flavonoids/pharmacology*
2.Melanogenesis of quality markers in Vernonia anthelmintica Injection based on UPLC-Q-TOF-MS combined network pharmacology.
Lin LUO ; Yan-Yuan ZHANG ; Cheng WANG ; Si-Lu HUANG ; Xiao-Qin WANG ; Bo ZHANG
China Journal of Chinese Materia Medica 2023;48(6):1606-1619
This study aimed to evaluate the biological effect and mechanism of Vernonia anthelmintica Injection(VAI) on melanin accumulation. The in vivo depigmentation model was induced by propylthiouracil(PTU) in zebrafish, and the effect of VAI on melanin accumulation was evaluated based on the in vitro B16F10 cell model. The chemical composition of VAI was identified according to the high-performance liquid chromatography quadrupole-time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS). Network pharmaco-logy was applied to predict potential targets and pathways of VAI. A "VAI component-target-pathway" network was established, and the pharmacodynamic molecules were screened out based on the topological characteristics of the network. The binding of active molecules to key targets was verified by molecular docking. The results showed that VAI promoted tyrosinase activity and melanin production in B16F10 cells in a dose-and time-dependent manner and could restore the melanin in the body of the zebrafish model. Fifty-six compounds were identified from VAI, including flavonoids(15/56), terpenoids(10/56), phenolic acids(9/56), fatty acids(9/56), steroids(6/56), and others(7/56). Network pharmacological analysis screened four potential quality markers, including apigenin, chrysoeriol, syringaresinol, and butein, involving 61 targets and 65 pathways, and molecular docking verified their binding to TYR, NFE2L2, CASP3, MAPK1, MAPK8, and MAPK14. It was found that the mRNA expression of MITF, TYR, TYRP1, and DCT in B16F10 cells was promoted. By UPLC-Q-TOF-MS and network pharmacology, this study determined the material basis of VAI against vitiligo, screened apigenin, chrysoeriol, syringaresinol, and butein as the quality markers of VAI, and verified the efficacy and internal mechanism of melanogenesis, providing a basis for quality control and further clinical research.
Animals
;
Vernonia/chemistry*
;
Melanins/metabolism*
;
Zebrafish/metabolism*
;
Network Pharmacology
;
Molecular Docking Simulation
;
Apigenin/pharmacology*
;
Drugs, Chinese Herbal/pharmacology*
;
Chromatography, High Pressure Liquid
3.Apigenin alleviates neomycin-induced oxidative damage via the Nrf2 signaling pathway in cochlear hair cells.
Gaogan JIA ; Huanyu MAO ; Yanping ZHANG ; Yusu NI ; Yan CHEN
Frontiers of Medicine 2022;16(4):637-650
Oxidative stress plays an important role in the pathogenesis of aminoglycoside-induced hearing loss and represents a promising target for treatment. We tested the potential effect of apigenin, a natural flavonoid with anticancer, anti-inflammatory, and antioxidant activities, on neomycin-induced ototoxicity in cochlear hair cells in vitro. Results showed that apigenin significantly ameliorated the loss of hair cells and the accumulation of reactive oxygen species upon neomycin injury. Further evidence suggested that the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway was activated by apigenin treatment. Disruption of the Nrf2 axis abolished the effects of apigenin on the alleviation of oxidative stress and subsequent apoptosis of hair cells. This study provided evidence of the protective effect of apigenin on cochlear hair cells and its underlying mechanism.
Apigenin/pharmacology*
;
Apoptosis
;
Hair Cells, Auditory/metabolism*
;
Humans
;
NF-E2-Related Factor 2/pharmacology*
;
Neomycin
;
Oxidative Stress
;
Reactive Oxygen Species/metabolism*
;
Signal Transduction
4.Apigenin's anticancer properties and molecular mechanisms of action: Recent advances and future prospectives.
Jumah Masoud Mohammad SALMANI ; Xiao-Ping ZHANG ; Joe Antony JACOB ; Bao-An CHEN
Chinese Journal of Natural Medicines (English Ed.) 2017;15(5):321-329
Cancer is a major health concern and leading burden on economy worldwide. An increasing effort is devoted to isolation and development of plant-derived dietary components as effective chemo-preventive products. Phytochemical compounds from natural resources such as fruits and vegetables are responsible for decreasing the risk of certain cancers among the consuming populations. Apigenin, a flavonoid phytochemical found in many kinds of fruits and vegetables, has been shown to exert significant biological effects, such as anti-oxidant, anti-inflammatory and most particularly anti-neoplastic properties. This review is intended to summarize the most recent advances in the anti-proliferative and chemo-preventive effects of apigenin in different cancer models. Analysis of the data from the studied cancer models has revealed that apigenin exerts its anti-proliferative effects through multiple and complex pathways. This guided us to discover some controversial results about the exact role of certain molecular pathways such as autophagy in the anticancer effects of apigenin. Further, there were cumulative positive evidences supporting the involvement of certain pathways such as apoptosis, ROS and DNA damage and repair. Apigenin possesses a high potential to be used as a chemosensitizing agent through the up-regulation of DR5 pathway. According to these preclinical findings we recommend that further robust unbiased studies should consider the possible interactions between different molecular pathways.
Animals
;
Antineoplastic Agents, Phytogenic
;
chemistry
;
pharmacology
;
Apigenin
;
chemistry
;
pharmacology
;
Apoptosis
;
drug effects
;
Autophagy
;
drug effects
;
Humans
;
Neoplasms
;
drug therapy
;
genetics
;
metabolism
;
physiopathology
;
Phytochemicals
;
chemistry
;
pharmacology
5.Inhibitory effect of jianpi-jiedu prescription-contained serum on colorectal cancer SW48 cell proliferation by mTOR-P53-P21 signalling pathway.
Fengxia LIN ; Sanlin LEI ; Jin'an MA ; Li SHI ; Dan MAO ; Shaofan ZHANG ; Jianhua HUANG ; Xinyi LIU ; Dengfeng DING ; Yingjin ZHANG ; Sifang ZHANG
Journal of Central South University(Medical Sciences) 2016;41(11):1128-1136
To investigate the effect of jianpi-jiedu (JPJD) prescription-contained serum on colorectal cancer SW48 cell proliferation and the underlying mechanisms.
Methods: Crude extract from JPJD was made by water extract method and the main components of crude extract from JPJD were analyzed by ultra-performance liquid phase high resolution time of flight mass spectrometry (UPLC-Q-TOF/MS). The low, medium, and high-concentration of JPJD-contained serum were prepared by the serum pharmacological method. The effect of serum containing JPJD on SW48 cell proliferation was determined by MTT assay. The cell cycle was detected by flow cytometric method. The protein levels of mammalian target of rapamycin (mTOR), phospho-mTOR, P-P53, and -P21, and the mRNA level of mTOR were examined by Western blot and RT-PCR, respectively.
Results: Seven compounds including calycosin-7-glucoside, astragaloside, ginsenoside-Re, ginsenoside-Rb1, glycyrrhizinic acid, apigenin, atractylenolide-II were identified. MTT assays demonstrated that the SW48 cell proliferation was inhibited by medium and high concentration of JPJD-contained serum and the percentages of cells at G1 phase in SW48 cell cultured in the medium and high concentration of JPJD serum group were significantly higher than those in the control group (P<0.05). Meanwhile, the levels of mTOR mRNA and phospho-mTOR protein in the medium and high concentration of JPJD serum groups were substantially lower than those in the control group (P<0.05). Conversely, the expressions of phospho-P53 and P21 protein were significantly increased in the medium and high concentration of JPJD serum group compared with those in the control group.
Conclusion: JPJD prescription-contained serum can inhibit SW48 cell proliferation, which may be related to mTOR-P53-P21 signaling pathways.
Animals
;
Apigenin
;
Blotting, Western
;
Cell Cycle
;
Cell Division
;
Cell Proliferation
;
drug effects
;
genetics
;
Colorectal Neoplasms
;
Cyclin-Dependent Kinase Inhibitor p21
;
drug effects
;
Drugs, Chinese Herbal
;
pharmacology
;
Flow Cytometry
;
Ginsenosides
;
Glycyrrhizic Acid
;
Humans
;
Lactones
;
Phosphorylation
;
genetics
;
RNA, Messenger
;
Saponins
;
Sesquiterpenes
;
Signal Transduction
;
TOR Serine-Threonine Kinases
;
drug effects
;
Triterpenes
;
Tumor Suppressor Protein p53
;
drug effects
6.Effects of apigenin on self-renewal and uPAR expression in NCI-H446 cell line.
Ling SHU ; Qing YUAN ; Yinghong CUI ; Shuwen SUN ; A CHEN ; Dan CHEN ; Jianguo CAO ; Jiansong ZHANG
Journal of Central South University(Medical Sciences) 2016;41(11):1124-1127
To investigate the effect of apigenin on self-renewal for sphere-forming cells in human small cell lung cancer cell line NCI-H446 and the underlying mechanisms.
Methods: Sphere-forming cells from NCI-H446 cell line were cultured in stem cell-conditioned culture medium with ultra-low attachment surface plates. The rate of sphere-forming cells in the second passage sphere-forming cells was used to evaluate the inhibitory effects of apigenin on the self-renewal for sphere-forming cells. The protein level of urokinase-type plasminogen activator receptor (uPAR) in spheroids was analyzed by Western blot.
Results: Apigenin signifcantly inhibited the self-renewal of the second passage sphere-forming cells [0, 5.0, 10.0, 20.0 μmol/L apigenin: (18.2±1.9)%, (13.6±1.7)%, (10.6±1.6)%, (6.9±1.3)%, respectively] and down-regulated uPAR expression in a concentration-dependent manner (P<0.05).
Conclusion: Apigenin inhibits the self-renewal capacity of sphere-forming cells in NCI-H446 cells, which may be associated with down-regulation of uPAR expression.
Apigenin
;
pharmacology
;
Cell Line, Tumor
;
Down-Regulation
;
drug effects
;
genetics
;
Humans
;
Lung Neoplasms
;
Neoplastic Stem Cells
;
drug effects
;
pathology
;
physiology
;
Receptors, Cell Surface
;
Receptors, Urokinase Plasminogen Activator
;
drug effects
;
genetics
;
metabolism
;
Signal Transduction
;
Small Cell Lung Carcinoma
;
drug therapy
;
pathology
;
Spheroids, Cellular
;
drug effects
;
physiology
;
Stem Cells
7.Effect of apigenin on protein expressions of PPARs in liver tissues of rats with nonalcoholic steatohepatitis.
Tingting SHI ; Rangxiao ZHUANG ; Hongping ZHOU ; Fugen WANG ; Yidan SHAO ; Zhaobin CAI
Chinese Journal of Hepatology 2015;23(2):124-129
OBJECTIVETo investigate the effect of apigenin on the protein expression levels of peroxisome proliferator-activated receptors (PPARs) in liver tissues of rats with nonalcoholic steatohepatitis (NASH).
METHODSThe NASH rat model was established by feeding of a high-fat diet. Unmodeled rats served as the normal controls. The modeled rats were divided into a model control group, Essentiale treatment grouP(300 mg/kg/day),and three apigenin treatment groups for low-dose (15 mg/kg/day), moderate-dose (30 mg/kg/day) and high-dose (60 mg/kg/day). After 13 weeks of treatment,changes in insulin sensitivity from pre-treatment baseline were assessed by measuring the alanine aminotransferase (ALT), aspartate aminotransferase (AST),total cholesterol (TC),triglycerides (TG),low-density and high-density lipoprotein cholesterol (LDL-C and HDL-C),fasting blood glucose (FBG) and fasting insulin (FINS).The liver index and HOMA-IR were also calculated.Protein and gene expression of PPARα and PPARgamma in liver tissue were assessed by immunohistochemistry and RT-PCR.Statistical analysis was performed by the LSD test and Games-Howell test.
RESULTSThe apigenin-treated groups showed a significantly greater change in insulin sensitivity than the untreated model group,with the most significant change occurring in the high-dose grouP(P less than 0.05).Compared with the untreated model group,the apigenin-treated groups showed lower levels of ALT (95.4+/-7.3),AST (183.7+/-14.3),TC (1.61+/-0.25),TG (1.23+/-0.21),LDL-C (1.86+/-0.14),FBG (5.29+/-1.45) and FINS (0.76+/-0.86),but a higher level of HDL-C (1.04+/-0.17); again,the high-dose group showed the greatest change (all P less than 0.05).Compared to the untreated model group,the apigenin-treated groups showed significantly lower liver index (3.75+/-0.25 vs.2.90+/-0.17) and HOMA-IR (1.34+/-0.06 vs.0.18+/-0.04),with the high-dose group showing the greatest change (both P less than 0.05). Compared to the untreated model group,the apigenin-treated groups showed higher levels of protein and mRNA of PPARα (18.27+/-4.05 and 0.63+/-0.02,respectively) and PPARgamma(8.48+/-5.05 and 0.39+/-0.02),with the high-dose group showing the greatest change (all P < 0.05).
CONCLUSIONApigenin can improve glucose tolerance,lipid metabolism and insulin resistance while decreasing blood levels of TC,TG,LDL-C,FBG,FINS and HOMA-IR,and increasing HDL-C in NASH,as shown in a high-fat diet induced rat model, and may have therapeutic potential.
Alanine Transaminase ; metabolism ; Animals ; Apigenin ; pharmacology ; Aspartate Aminotransferases ; metabolism ; Blood Glucose ; metabolism ; Cholesterol ; metabolism ; Disease Models, Animal ; Insulin ; metabolism ; Insulin Resistance ; Lipid Metabolism ; Liver ; enzymology ; Non-alcoholic Fatty Liver Disease ; metabolism ; PPAR alpha ; metabolism ; PPAR gamma ; metabolism ; Peroxisome Proliferator-Activated Receptors ; metabolism ; Rats ; Rats, Sprague-Dawley ; Triglycerides ; metabolism
8.Research progress on plant resources distribution of vitexin and its pharmacological effects.
Cheng-bo GU ; Man CAI ; Xiao-han YUAN ; Yuan-gang ZU
China Journal of Chinese Materia Medica 2015;40(3):382-389
Vitexin, a naturally occurring flavone glycoside in plants, has many pharmacological effects, which is widely distributed in nature. This paper reviewed the research progress of the distribution of vitexin in the plant resources and its pharmacological effects, and summarized its application prospects, aiming to provide a useful reference for the development of vitexin-enriched plant resources.
Animals
;
Antineoplastic Agents
;
pharmacology
;
Antioxidants
;
pharmacology
;
Apigenin
;
pharmacology
;
Humans
;
Hypoglycemic Agents
;
pharmacology
;
Myocardial Infarction
;
drug therapy
;
Plant Dispersal
9.Scutellarin attenuates endothelium-dependent aasodilation impairment induced by hypoxia reoxygenation, through regulating the PKG signaling pathway in rat coronary artery.
Ya-Juan CHEN ; Lei WANG ; Guang-Yu ZHOU ; Xian-Lun YU ; Yong-Hui ZHANG ; Na HU ; Qing-Qing LI ; Chen CHEN ; Chen QING ; Ying-Ting LIU ; Wei-Min YANG
Chinese Journal of Natural Medicines (English Ed.) 2015;13(4):264-273
Scutellarin (SCU), a flavonoid from a traditional Chinese medicinal plant. Our previous study has demonstrated that SCU relaxes mouse aortic arteries mainly in an endothelium-depend-ent manner. In the present study, we investigated the vasoprotective effects of SCU against HR-induced endothelial dysfunction (ED) in isolated rat CA and the possible mechanisms involving cyclic guanosine monophosphate (cGMP) dependent protein kinase (PKG). The isolated endothelium-intact and endothelium-denuded rat CA rings were treated with HR injury. Evaluation of endothelium-dependent and -independent vasodilation relaxation of the CA rings were performed using wire myography and the protein expressions were assayed by Western blotting. SCU (10-1 000 μmol·L(-1)) could relax the endothelium-intact CA rings but not endothelium-denuded ones. In the intact CA rings, the PKG inhibitor, Rp-8-Br-cGMPS (PKGI-rp, 4 μmol·L(-1)), significantly blocked SCU (10-1 000 μmol·L(-1))-induced relaxation. The NO synthase (NOS) inhibitor, NO-nitro-L-arginine methylester (L-NAME, 100 μmol·L(-1)), did not significantly change the effects of SCU (10-1 000 μmol·L(-1)). HR treatment significantly impaired ACh-induced relaxation, which was reversed by pre-incubation with SCU (500 μmol·L(-1)), while HR treatment did not altered NTG-induced vasodilation. PKGI-rp (4 μmol·L(-1)) blocked the protective effects of SCU in HR-treated CA rings. Additionally, HR treatment reduced phosphorylated vasodilator-stimulated phosphoprotein (p-VASP, phosphorylated product of PKG), which was reversed by SCU pre-incubation, suggesting that SCU activated PKG phosphorylation against HR injury. SCU induces CA vasodilation in an endothelium-dependent manner to and repairs HR-induced impairment via activation of PKG signaling pathway.
Animals
;
Apigenin
;
pharmacology
;
Cell Adhesion Molecules
;
drug effects
;
Cell Hypoxia
;
Coronary Vessels
;
drug effects
;
Cyclic GMP
;
analogs & derivatives
;
metabolism
;
pharmacology
;
Cyclic GMP-Dependent Protein Kinases
;
Glucuronates
;
pharmacology
;
Microfilament Proteins
;
drug effects
;
NG-Nitroarginine Methyl Ester
;
metabolism
;
pharmacology
;
Phosphoproteins
;
drug effects
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury
;
complications
;
physiopathology
;
Signal Transduction
;
drug effects
;
Thionucleotides
;
metabolism
;
pharmacology
;
Vasodilation
;
drug effects
;
physiology
10.Role of ERK/FoxO3a signal axis in inhibitory effect of vitexin 1 (VB-1) in HepG2 cell proliferation.
Xing-Xing ZHENG ; Ren-Shuo ZHANG ; Ying-Jun ZHOU ; Jian-Gang WANG
China Journal of Chinese Materia Medica 2014;39(7):1276-1279
OBJECTIVETo investigate whether the ERK/FoxO3a signal axis could induce the inhibitory effect of vitexin 1 (VB-1) in HepG2 cell proliferation.
METHODThe MTT method was adopted to observe the effect of different concentrations of VB-1 on human hepatoma carcinoma cell line HepG2 and immortalized human embryo liver cell line L-02. The cell growth was assessed by the clone formation assay. The protein phosphorylation levels of ERK1/2 and FoxO3a were measured by the western blot.
RESULTVB-1 inhibited the viability of HepG2 cell line in a concentration-dependent manner, with a weak effect on L-02 cell line. VB-1 could effectively inhibit the anchorage-dependent growth of HepG2 cells, and reduce the expression levels of pERK1/2 and pFoxO3a in a concentration-dependent manner. MEK1/2 inhibitor PD98059 could enhance VB-1' s effect in inhibiting HepG2 cell proliferation and ERK1/2, FoxO3a phosphorylation.
CONCLUSIONVB-1 inhibits the proliferative activity of hepatoma carcinoma cell line HepG2 by blocking the ERK/FoxO3a signal axis.
Apigenin ; pharmacology ; Carcinoma, Hepatocellular ; drug therapy ; genetics ; metabolism ; physiopathology ; Cell Proliferation ; drug effects ; Drugs, Chinese Herbal ; pharmacology ; Extracellular Signal-Regulated MAP Kinases ; genetics ; metabolism ; Forkhead Box Protein O3 ; Forkhead Transcription Factors ; genetics ; metabolism ; Growth Inhibitors ; pharmacology ; Hep G2 Cells ; Humans ; Liver Neoplasms ; drug therapy ; genetics ; metabolism ; physiopathology ; Signal Transduction ; drug effects

Result Analysis
Print
Save
E-mail