1.Hawthorn Extract Alleviates Atherosclerosis through Regulating Inflammation and Apoptosis Related Factors: An Experimental Study.
Song-Zi WANG ; Min WU ; Ke-Ji CHEN ; Yue LIU ; Jing SUN ; Zhuo SUN ; He MA ; Long-Tao LIU
Chinese journal of integrative medicine 2019;25(2):108-115
OBJECTIVE:
To determine the effects of hawthorn extract on serum lipid levels, pathological changes in aortic atherosclerosis plaque, inflammatory factors, and apoptosis-related protein and mRNA expression in apolipoprotein E gene knockout (ApoE) mice.
METHODS:
Thirty-six ApoE mice were fed with a high-fat diet starting at the age of 8 weeks. Mice were randomly divided into 3 groups by a random number table including model group, hawthorn extract group, and simvastatin group, 12 mice in each group. Twelve 8-week-old C57BL/6 mice were fed a basic diet and served as control. The mice in the control and model groups were administered 0.2 mL saline daily, the mice in the hawthorn extract and simvastatin groups were administered with 50 mg/kg hawthorn extract or 5 mg/kg simvastatin daily for 16 weeks. After 16 weeks, plasma lipids including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) were determined by an enzymatic assay. Aortic atherosclerotic lesions were observed by light microscopy, scanning and transmission electron microscopy, respectively. Plasma levels of monocyte chemoattractant protein-1 (MCP-1), interleukin-1β (IL-1β), adiponectin (APN), and hypersensitive C-reactive protein (hs-CRP) were measured by enzyme-linked immunosorbent assay (ELISA). Protein and mRNA expressions of Bax and Bcl-2 in the aorta were assessed by Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR), respectively.
RESULTS:
Compared to the control group, the plasma levels of TC, TG and LDL-C were significantly increased and HDL-C were significantly decreased in the model group (P<0.01). Compared to the model group, treatment with hawthorn extract significantly decreased the plasma levels of TC, TG, and LDL-C and increased the plasma level of HDL-C in ApoE mice (P<0.01). The levels of MCP-1, IL-1ß, and hs-CRP in the model group were significantly increased and APN was significantly decreased compared with the control group (P<0.01). Compared to the model group, treatment with hawthorn extract decreased the levels of MCP-1, IL-1ß, and hs-CRP and increased the APN level (P<0.01). Compared to the control group, the protein and mRNA expression of Bax in the model group were significantly increased and the expression of Bcl-2 was significantly decreased (P<0.01). Hawthorn extract also reduced the protein and mRNA expression of Bax and increased the Bcl-2 expression in the aorta (P<0.01).
CONCLUSION
Hawthorn extract has anti-atherosclerosis and stabilizing unstable plaque effects. The mechanism may be related to the inflflammation and apoptosis signaling pathways.
Animals
;
Aorta
;
pathology
;
ultrastructure
;
Apoptosis
;
drug effects
;
Atherosclerosis
;
blood
;
complications
;
drug therapy
;
Crataegus
;
chemistry
;
Inflammation
;
blood
;
complications
;
drug therapy
;
Inflammation Mediators
;
metabolism
;
Lipids
;
blood
;
Male
;
Mice, Inbred C57BL
;
Plant Extracts
;
pharmacology
;
therapeutic use
;
RNA, Messenger
;
genetics
;
metabolism
;
bcl-2-Associated X Protein
;
metabolism
2.The protective effects of Astragaloside Ⅳ on diastolic function of rat thoracic aortic rings impaired by microvesicles.
Ye-Yi LI ; Man SHANG ; Kun-Wei ZHANG ; Su WEI ; Chao LIU ; Qian ZHU ; Jun-Yu ZHAO ; Yan-Na WU ; Jun-Qiu SONG ; Yan-Xia LIU
Chinese Journal of Applied Physiology 2018;34(2):164-168
OBJECTIVES:
To investigate the effects of Astragaloside IV (AST) on diastolic function of rat thoracic aorta rings which was injured by microvesicles derived from hypoxia/reoxygenation (H/R)-treated human umbilical vein endothelial cells (HUVECs), and the mechanism of AST.
METHODS:
H/R-induced endothelial microvesicles (H/R-EMVs) were generated from cultured HUVECs under the condition of hypoxia for 12 hour/Reoxygenation for 4 hour, H/R-EMVs were stored in D-Hank's solution. Male Wistar rats were underwent thoracotomy, the thoracic aorta with intact endothelium were carefully removed and cut into 3~4 mm rings. The experiment was divided into six groups. H/R-EMVs group:thoracic aortic rings of rats were incubated in culture medium and treated with H/R-EMVs in a final concentration of 10g/ml; different doses of AST groups:thoracic aortic rings of rats were treated with 10, 20, 40, 60 mg/L AST co-incubated with 10g/ml H/R-EMVs respectively; control group were treated with the same volume of D-Hank's solution. Duration of incubation was 4 h, each group was tested in five replicate aortic rings. Effects of AST on endothelium-dependent relaxation were detected. The production of nitric oxide (NO) and the level of endothelial NO synthase (eNOS), phosphorylated eNOS (p-eNOS, Ser-1177), serine/threonine kinase (Akt), phosphorylated Akt (p-Akt, Ser-473), extracellular regulated protein kinases (ERK1/2) and phosphorylated ERK1/2 (p-ERK1/2, Thr202/Tyr204) of rat thoracic aortic rings were detected.
RESULTS:
Teng/ml H/R-EMVs could impaire the relaxation of rat thoracic aortic rings significantly (<0.01). Compared with H/R-EMVs group, relaxation of rat thoracic aortic rings was increased by 20, 40 and 60 mg/L AST in a concentration-dependent manner (<0.01), the level of NO production was also enhanced (<0.05, <0.01). The level of t-eNOS, t-Akt and ERK1/2 was not changed, but the level of p-eNOS, p-Akt and p-ERK1/2 increased by the treatment with AST (<0.01).
CONCLUSIONS
AST could effectively ameliorate endotheliumdependent relaxation of rat thoracic aortic rings impaired by H/R-EMVs in a concentration-dependent manner, the mechanism might involve the increase in production of NO, and the protein level of p-eNOS, p-Akt and p-ERK1/2.
Animals
;
Aorta, Thoracic
;
drug effects
;
Cell-Derived Microparticles
;
pathology
;
Human Umbilical Vein Endothelial Cells
;
Humans
;
In Vitro Techniques
;
MAP Kinase Signaling System
;
Male
;
Nitric Oxide
;
metabolism
;
Nitric Oxide Synthase Type III
;
metabolism
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Rats
;
Rats, Wistar
;
Saponins
;
pharmacology
;
Triterpenes
;
pharmacology
;
Vasodilation
3.Early intervention with Didang decoction delays macrovascular lesions in diabetic rats through regulating AMP-activated protein kinase signaling pathway.
Dan-Dan REN ; Jing LI ; Bai CHANG ; Chun-Shen LI ; Ju-Hong YANG
Chinese Journal of Natural Medicines (English Ed.) 2017;15(11):847-854
The study aimed to investigate the intervening role of Didang decoction (DDD) at different times in macrovascular endothelial defense function, focusing on its effects on the AMP-activated protein kinase (AMPK) signaling pathway. The effects of DDD on mitochondrial energy metabolism were also investigated in rat aortic endothelial cells (RAECs). Type 2 diabetes were induced in rats by streptozotocin (STZ) combined with high fat diet. Rats were randomly divided into non-intervention group, metformin group, simvastatin group, and early-, middle-, late-stage DDD groups. Normal rats were used as control. All the rats received 12 weeks of intervention or control treatment. Western blots were used to detect the expression of AMP-activated protein kinase α1 (AMPKα1) and peroxisome proliferator-activated receptor 1α (PGC-1α). Changes in the intracellular AMP and ATP levels were detected with ELISA. Real-time-PCR was used to detect the mRNA level of caspase-3, endothelial nitric oxide synthase (eNOS), and Bcl-2. Compared to the diabetic non-intervention group, a significant increase in the expression of AMPKα1 and PGC-1α were observed in the early-stage, middle-stage DDD groups and simvastatin group (P < 0.05). The levels of Bcl-2, eNOS, and ATP were significantly increased (P < 0.05), while the level of AMP and caspase-3 were decreased (P < 0.05) in the early-stage DDD group and simvastatin group. Early intervention with DDD enhances mitochondrial energy metabolism by regulating the AMPK signaling pathway and therefore may play a role in strengthening the defense function of large vascular endothelial cells and postpone the development of macrovascular diseases in diabetes.
AMP-Activated Protein Kinases
;
metabolism
;
Adenosine Triphosphate
;
metabolism
;
Animals
;
Aorta
;
drug effects
;
metabolism
;
Cardiovascular Diseases
;
metabolism
;
prevention & control
;
Caspase 3
;
metabolism
;
Diabetes Mellitus, Experimental
;
complications
;
drug therapy
;
metabolism
;
Diabetes Mellitus, Type 2
;
complications
;
drug therapy
;
metabolism
;
Diptera
;
Drugs, Chinese Herbal
;
pharmacology
;
therapeutic use
;
Endothelial Cells
;
drug effects
;
metabolism
;
Endothelium, Vascular
;
drug effects
;
metabolism
;
Energy Metabolism
;
drug effects
;
Leeches
;
Mitochondria
;
drug effects
;
metabolism
;
Nitric Oxide Synthase Type III
;
metabolism
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
;
metabolism
;
Phytotherapy
;
Proto-Oncogene Proteins c-bcl-2
;
metabolism
;
Prunus persica
;
Rats, Sprague-Dawley
;
Rheum
;
Signal Transduction
4.Tacrolimus inhibits vasoconstriction by increasing Ca(2+) sparks in rat aorta.
Yu-fang CHEN ; Chen WANG ; Rui ZHANG ; Huan WANG ; Rong MA ; Si JIN ; Ji-zhou XIANG ; Qiang TANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(1):8-13
The present study attempted to test a novel hypothesis that Ca(2+) sparks play an important role in arterial relaxation induced by tacrolimus. Recorded with confocal laser scanning microscopy, tacrolimus (10 µmol/L) increased the frequency of Ca(2+) sparks, which could be reversed by ryanodine (10 µmol/L). Electrophysiological experiments revealed that tacrolimus (10 µmol/L) increased the large-conductance Ca(2+)-activated K(+) currents (BKCa) in rat aortic vascular smooth muscle cells (AVSMCs), which could be blocked by ryanodine (10 µmol/L). Furthermore, tacrolimus (10 and 50 µmol/L) reduced the contractile force induced by norepinephrine (NE) or KCl in aortic vascular smooth muscle in a concentration-dependent manner, which could be also significantly attenuated by iberiotoxin (100 nmol/L) and ryanodine (10 µmol/L) respectively. In conclusion, tacrolimus could indirectly activate BKCa currents by increasing Ca(2+) sparks released from ryanodine receptors, which inhibited the NE- or KCl-induced contraction in rat aorta.
Animals
;
Aorta
;
cytology
;
metabolism
;
physiology
;
Calcium Signaling
;
Cells, Cultured
;
Large-Conductance Calcium-Activated Potassium Channels
;
metabolism
;
Male
;
Muscle, Smooth, Vascular
;
drug effects
;
metabolism
;
physiology
;
Myocytes, Smooth Muscle
;
drug effects
;
metabolism
;
Norepinephrine
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Ryanodine
;
pharmacology
;
Tacrolimus
;
pharmacology
;
Vasoconstriction
5.Effect of Pneumoperitoneum on Oxidative Stress and Inflammation via the Arginase Pathway in Rats.
Seokyung SHIN ; Sungwon NA ; Ok Soo KIM ; Yong Seon CHOI ; Shin Hyung KIM ; Young Jun OH
Yonsei Medical Journal 2016;57(1):238-246
PURPOSE: Oxidative stress during CO2 pneumoperitoneum is reported to be associated with decreased bioactivity of nitric oxide (NO). However, the changes in endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and arginase during CO2 pneumoperitoneum have not been elucidated. MATERIALS AND METHODS: Thirty male Sprague-Dawley rats were randomized into three groups. After anesthesia induction, the abdominal cavities of the rats of groups intra-abdominal pressure (IAP)-10 and IAP-20 were insufflated with CO2 at pressures of 10 mm Hg and 20 mm Hg, respectively, for 2 hours. The rats of group IAP-0 were not insufflated. After deflation, plasma NO was measured, while protein expression levels and activity of eNOS, iNOS, arginase (Arg) I, and Arg II were analyzed with aorta and lung tissue samples. RESULTS: Plasma nitrite concentration and eNOS expression were significantly suppressed in groups IAP-10 and IAP-20 compared to IAP-0. While expression of iNOS and Arg I were comparable between the three groups, Arg II expression was significantly greater in group IAP-20 than in group IAP-0. Activity of eNOS was significantly lower in groups IAP-10 and IAP-20 than in group IAP-0, while iNOS activity was significantly greater in group IAP-20 than in groups IAP-0 and IAP-10. Arginase activity was significantly greater in group IAP-20 than in groups IAP-0 and IAP-10. CONCLUSION: The activity of eNOS decreases during CO2 pneumoperitoneum, while iNOS activity is significantly increased, a change that contributes to increased oxidative stress and inflammation. Moreover, arginase expression and activity is increased during CO2 pneumoperitoneum, which seems to act inversely to the NO system.
Animals
;
Aorta/*physiology
;
Arginase/*antagonists & inhibitors
;
Enzyme Inhibitors/administration & dosage/pharmacology
;
Inflammation/etiology/*prevention & control
;
Injections, Subcutaneous
;
Lung Injury/etiology/prevention & control
;
Male
;
Nitric Oxide/metabolism
;
Nitric Oxide Synthase Type II/*metabolism
;
Nitric Oxide Synthase Type III/*metabolism
;
Oxidative Stress/*drug effects
;
Pneumoperitoneum/*complications/drug therapy
;
Rats
;
Rats, Sprague-Dawley
6.Effect of angiotensin receptor blockade on central aortic systolic blood pressure in hypertensive Asians measured using radial tonometry: an open prospective cohort study.
Hui Hwang TEONG ; Adeline Mei Lin CHIN ; Ashish Anil SULE ; Jam Chin TAY
Singapore medical journal 2016;57(7):384-389
INTRODUCTIONCentral aortic systolic pressure (CASP) has been shown to be a stronger predictor of cardiovascular events than brachial blood pressure (BP). Different classes of drugs have differential effects on CASP and brachial BP. This open prospective cohort study aimed to observe changes in CASP (measured using radial tonometry) among hypertensive Asians after 12 weeks of treatment with valsartan, an angiotensin receptor blocker (ARB).
METHODSPatients with treatment-naïve hypertension or uncontrolled hypertension who were on non-ARB therapy were eligible for inclusion. Patients with uncontrolled BP (i.e. ≥ 140/90 mmHg) received valsartan for 12 weeks. The patients' brachial systolic and diastolic BP (SBP and DBP), and CASP changes were monitored using the BPro® watch.
RESULTSThe mean age of the 44 enrolled patients was 35 years. At baseline, the mean BP and CASP were 150.2/91.4 ± 10.6/9.4 mmHg and 136.3 ± 12.2 mmHg, respectively. Valsartan reduced SBP, DBP and CASP by 14.9 ± 10.7 mmHg, 10.9 ± 8.4 mmHg and 15.3 ± 10.9 mmHg, respectively (all p < 0.001). Every 1.0-mmHg reduction in brachial SBP resulted in a 0.8-mmHg reduction in CASP (p < 0.001). A CASP cut-off of 122.5 mmHg discriminated between controlled and uncontrolled BP (sensitivity 74%, specificity 88%).
CONCLUSIONUsing radial tonometry, we demonstrated good correlation between CASP and brachial SBP reductions after 12 weeks of treatment with valsartan in our study cohort. Correlation analysis between CASP and SBP reductions may be useful for demonstrating whether a drug is able to lower CASP beyond lowering SBP.
Adult ; Angiotensin Receptor Antagonists ; pharmacology ; Aorta ; drug effects ; Blood Pressure ; Blood Pressure Monitoring, Ambulatory ; Diastole ; Female ; Humans ; Hypertension ; drug therapy ; Male ; Manometry ; methods ; Middle Aged ; Prospective Studies ; Receptors, Angiotensin ; metabolism ; Systole ; drug effects ; Valsartan ; therapeutic use ; Young Adult
7.Effect of Ginkgo biloba Tablet on the Expression of Scavenger Receptor A of the Aortic Wall in Atherosclerotic Rats.
Gui-yue ZHU ; Wei ZHU ; Ling-yun PAN ; Xiao-jing MA ; Hai-tao YUAN ; Guang YANG
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(4):449-453
OBJECTIVETo observe the expression of Ginkgo biloba Tablet (GbT) on scavenger receptor A (SRA) of the aortic wall and changes of serum inflammatory factors in atherosclerotic rats, and to explore its new mechanism for fighting against atherosclerosis (AS).
METHODSTotally 45 male Wistar rats were randomly divided into the control group, the model group, the GbT group, 15 rats in each group. Levels of blood glucose, blood lipids, blood calcium, serum C-reactive protein (CRP), soluble intercellular adhesion molecule-1 (slCAM-1), and soluble vascular cell adhesion molecule-1 (sVCAM-1) were measured in all rats. The expression of SRA in the aortic wall of atherosclerotic rats was observed by immunohistochemical assay. The correlation between the expression of SRA and levels of in-flammatory factors was also observed.
RESULTSCompared with the control group, blood glucose and blood calcium obviously increased (P < 0.05); levels of TG, TC, and LDL-C were significantly elevated (P < 0.01); neointimal areas were significantly thickened, increased intima percentage was significantly enlarged, narrowed lumen index was significantly reduced; levels of CRP, sICAM-1, and sVCAM-1 were significantly elevated in the model group (all P < 0.01). Compared with the model group, blood glucose and blood calcium obviously decreased (P < 0.05); levels of TG, TC, and LDL-C significantly decreased (P < 0.01) in the GbT group. Aortic lumens were obviously narrower in the model group than in the GbT group (P < 0.05). SRA expressed at the aortic wall. The aforesaid 3 indices were significantly improved in the GbT group than in the model group (P < 0.01). Serum levels of CRP, sICAM-1, and sVCAM-1 were significantly decreased in the GbT group than in the model group (P < 0.01). Serum levels of CRP, sICAM-1, and sVCAM-1 were positively correlated with the percentage of SRA positive expression area (r = 0.701, 0.604, 0.581, all P < 0.01).
CONCLUSIONSSerum levels of inflammatory factors in atherosclerotic rats were elevated, and the expression of SRA in the aortic wall was enhanced. The expression of SRA was closely correlated with serum levels of inflammatory factors. GbT could decrease serum levels of inflammatory factors and inhibit the expression of SRA.
Animals ; Aorta ; drug effects ; metabolism ; Atherosclerosis ; drug therapy ; Blood Glucose ; analysis ; C-Reactive Protein ; analysis ; Calcium ; blood ; Drugs, Chinese Herbal ; pharmacology ; Ginkgo biloba ; chemistry ; Intercellular Adhesion Molecule-1 ; blood ; Lipids ; blood ; Male ; Random Allocation ; Rats ; Rats, Wistar ; Scavenger Receptors, Class A ; metabolism ; Tablets ; Vascular Cell Adhesion Molecule-1 ; blood
8.Effect of ouabain on intracellular Ca(2+) concentration in rat vascular smooth muscle cells in vitro.
Mingjuan ZHANG ; Meicheng ZHANG ; Chaoying ZHANG ; Jun YANG ; Canzhan ZHU ; Zongming DUAN
Journal of Southern Medical University 2015;35(7):960-965
OBJECTIVETo explore the effect of ouabain on intracellular Ca(2+) concentration ([Ca(2+)]i) in thoracic aorta vascular smooth muscle cells (VSMCs) in vitro.
METHODSPrimary SD rat thoracic aorta VSMCs were cultured by tissue adherent method and identified by immunochemistry. The binding ability between ouabain and VSMCs was detected by autoradiography, and fluo 3-AM (a Ca(2+) fluorescent probe) was employed to investigate whether ouabain affected VSMCs within a short period of time. The effect of a truncated fragment of the sodium pump α2 subunit was assayed in antagonizing the effect of ouabain on [Ca(2+)]i in the VSMCs.
RESULTSWithin the concentration range of 0.1-100 nmol/L, ouabain was found to dose-dependently bind to the VSMCs. Different concentrations of ouabain (0-3200 nmol/L) caused a transient, dose-dependent increase in [Ca(2+)]i in the VSMCs, which was antagonized by the application of the truncated fragment of sodium pump α2 subunit.
CONCLUSIONSElevations in [Ca(2+)]i in the VSMCs can be the cytological basis of high ouabain-induced hypertension. The truncated fragment of the sodium pump α2 subunit can antagonize ouabain-induced increase of [Ca(2+)]i in the VSMCs, which provides a clue for understanding the pathogenesis of and devising a therapeutic strategy for high ouabain-induced hypertension.
Animals ; Aorta, Thoracic ; cytology ; Calcium ; metabolism ; Cells, Cultured ; Cytoplasm ; metabolism ; Muscle, Smooth, Vascular ; cytology ; Myocytes, Smooth Muscle ; drug effects ; metabolism ; Ouabain ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Sodium-Potassium-Exchanging ATPase
9.The function and meaning of receptor activator of NF-κB ligand in arterial calcification.
Bin NIE ; Shao-qiong ZHOU ; Xin FANG ; Shao-ying ZHANG ; Si-ming GUAN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):666-671
Osteoclast-like cells are known to inhibit arterial calcification. Receptor activator of NF-κB ligand (RANKL) is likely to act as an inducer of osteoclast-like cell differentiation. However, several studies have shown that RANKL promotes arterial calcification rather than inhibiting arterial calcification. The present study was conducted in order to investigate and elucidate this paradox. Firstly, RANKL was added into the media, and the monocyte precursor cells were cultured. Morphological observation and Tartrate resistant acid phosphatase (TRAP) staining were used to assess whether RANKL could induce the monocyte precursor cells to differentiate into osteoclast-like cells. During arterial calcification, in vivo and in vitro expression of RANKL and its inhibitor, osteoprotegerin (OPG), was detected by real-time PCR. The extent of osteoclast-like cell differentiation was also assessed. It was found RANKL could induce osteoclast-like cell differentiation. There was no in vivo or in vitro expression of osteoclast-like cells in the early stage of calcification. At that time, the ratio of RANKL to OPG was very low. In the late stage of calcification, a small amount of osteoclast-like cell expression coincided with a relatively high ratio of RANKL to OPG. According to the results, the ratio of RANKL to OPG was very low during most of the arterial calcification period. This made it possible for OPG to completely inhibit RANKL-induced osteoclast-like cell differentiation. This likely explains why RANKL had the ability to induce osteoclast-like cell differentiation but acted as a promoter of calcification instead.
Acid Phosphatase
;
genetics
;
metabolism
;
Animals
;
Aorta
;
drug effects
;
metabolism
;
pathology
;
Cell Differentiation
;
Coculture Techniques
;
Gene Expression Regulation
;
Isoenzymes
;
genetics
;
metabolism
;
Male
;
Monocytes
;
cytology
;
drug effects
;
metabolism
;
Myocytes, Smooth Muscle
;
drug effects
;
metabolism
;
pathology
;
Osteoclasts
;
drug effects
;
metabolism
;
pathology
;
Osteoprotegerin
;
genetics
;
metabolism
;
RANK Ligand
;
genetics
;
metabolism
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Tartrate-Resistant Acid Phosphatase
;
Vascular Calcification
;
genetics
;
metabolism
;
pathology
10.Effect of Buyang Huanwu Decoction on mRNA Expressions of Aorta Rho Kinase and NF-κB p65 in Atherosclerosis Model Rats.
Hong-zhen ZHANG ; Li LI ; Rui JIAO ; Ying ZHANG ; Yan QIAN
Chinese Journal of Integrated Traditional and Western Medicine 2015;35(12):1495-1500
OBJECTIVETo observe the effect of Buyang Huanwu Decoction (BYHWD), a representative formula of qi benefiting blood activating method on aorta Rho associated coiled-coil forming protein serine/threonine kinase (Rhokinase, ROCK) and nuclear transcription factor kappa B (NF-κB) p65 mRNA expressions and levels of blood lipids in atherosclerosis (AS) model rats.
METHODSThe AS rat model was prepared by vitamin D3 and high fat diet. Totally 60 rats were randomly divided into 6 groups, i.e., the normal control group, the model group, the low dose BYHWD group (10 g/kg), the high dose BYHWD group (20 g/kg), the Simvastatin control group (0.6 mg/kg), and the BYHWD prevention group (10 g/kg), 10 in each group. After successful modeling all medication was intervened for 28 days. Expression levels oxidized low density lipoprotein (ox-LDL) were detected by ELISA. Levels of TG, TC, LDL-C, HDL-C were determined by enzyme method. Pathological changes of aortic tissue were observed under light microscope. mRNA expressions of Rho kinase and NF-κB p65 in aorta were detected by real time (RT) PCR.
RESULTSHigh fat diet and peritoneal injection of vitamin D3 could induce AS rat model. Typical atheromatous plaque formed in aorta of AS model rats. Compared with the normal control group, levels of TC, TG, LDL-C, and ox-LDL significantly increased in the model group, but the HDL-C level decreased (P < 0.01). Compared with the model group, levels of TC, TG, LDL-C, and ox-LDL all decreased, but HDL-C increased in low and high dose BYHWD groups, the Simvastatin control group, and the BYHWD prevention group (P < 0.05, P < 0.01). Compared with the low dose BYHWD group, above-mentioned indices were more obviously lowered in the high dose BYHWD group, the Simvastatin control group, and the BYHWD prevention group (P < 0.05). Compared with the normal control group, mRNA expression levels of Rho kinase and NF-κB p65 significantly increased in the model group (P < 0.01). Compared with the model group, mRNA expressions of Rho kinase and NF-κB p65 obviously decreased in low and high dose BYHWD groups, the Simvastatin control group, and the BYHWD prevention group (P < 0.01). Compared with the low dose BYHWD group, the two indicators were more obviously lowered in the high dose BYHWD group, the Simvastatin control group, and the BYHWD prevention group (P < 0.05). But there was no statistical difference in blood lipids levels, mRNA expression levels of Rho kinase or NF-κB p65 among the high dose BYHWD group, the Simvastatin control group, and the BYHWD prevention group (P >0. 05).
CONCLUSIONSBYHWD could down-regulate mRNA expression levels of Rho kinase and NF-κB p65, lower levels of blood lipids, and fight against AS. Suppressing Rho kinase pathway might be one of its mechanisms.
Animals ; Aorta ; Atherosclerosis ; genetics ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Gene Expression ; drug effects ; Lipids ; Lipoproteins, LDL ; NF-kappa B ; metabolism ; RNA, Messenger ; metabolism ; Rats ; Simvastatin ; Transcription Factor RelA ; metabolism ; rho-Associated Kinases ; metabolism

Result Analysis
Print
Save
E-mail