1.Flavonoid Myricetin as Potent Anticancer Agent: A Possibility towards Development of Potential Anticancer Nutraceuticals.
Anchal TRIVEDI ; Adria HASAN ; Rumana AHMAD ; Sahabjada SIDDIQUI ; Aditi SRIVASTAVA ; Aparna MISRA ; Snober S MIR
Chinese journal of integrative medicine 2024;30(1):75-84
Good nutrition plays a crucial role in maintaining a balanced lifestyle. The beneficial effects of nutrition have been found to counteract nutritional disturbances with the expanded use of nutraceuticals to treat and manage cardiovascular diseases, cancer, and other developmental defects over the last decade. Flavonoids are found abundantly in plant-derived foods such as fruits, vegetables, tea, cocoa, and wine. Fruits and vegetables contain phytochemicals like flavonoids, phenolics, alkaloids, saponins, and terpenoids. Flavonoids can act as anti-inflammatory, anti-allergic, anti-microbial (antibacterial, antifungal, and antiviral) antioxidant, anti-cancer, and anti-diarrheal agents. Flavonoids are also reported to upregulate apoptotic activity in several cancers such as hepatic, pancreatic, breast, esophageal, and colon. Myricetin is a flavonol which is naturally present in fruits and vegetables and has shown possible nutraceutical value. Myricetin has been portrayed as a potent nutraceutical that may protect against cancer. The focus of the present review is to present an updated account of studies demonstrating the anticancer potential of myricetin and the molecular mechanisms involved therein. A better understanding of the molecular mechanism(s) underlying its anticancer activity would eventually help in its development as a novel anticancer nutraceutical having minimal side effects.
Humans
;
Flavonoids/chemistry*
;
Antineoplastic Agents/chemistry*
;
Dietary Supplements
;
Antioxidants/pharmacology*
;
Neoplasms/drug therapy*
2.Structure-activity relationship of Lycium barbarum polysaccharides.
Xiao-Fei LIANG ; Fang ZHANG ; Yin-Xiu JIANG ; Meng-Qiu LIU ; Sheng GUO ; Da-Wei QIAN ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2023;48(9):2387-2395
As a traditional Chinese herb and functional food, the fruits of Lycium barbarum has been widely used for thousands of years in China. L. barbarum polysaccharides(LBPs) are predominant active components, which have immunomodulatory, antioxidant, hypoglycemic, neuroprotective, anti-tumor, and prebiotic activities. The molecular weight, monosaccharide composition, glycosidic bond, branching degree, protein content, chemical modification, and spatial structure of LBPs are closely related to their biological activity. Based on the previous studies of this research team, this paper systematically combed and integrated the research progress of structure, function, and structure-activity relationship of LBPs. At the same time, some problems restricting the clarification of the structure-activity relationship of LBPs were considered and prospected, hoping to provide references for the high value utilization of LBPs and in-depth exploration of their health value.
Lycium/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Structure-Activity Relationship
;
Antioxidants/pharmacology*
;
Antineoplastic Agents
;
Polysaccharides/chemistry*
3.A new xanthone from hulls of Garcinia mangostana and its cytotoxic activity.
Feng-Ning ZHAO ; Qi NIU ; Die XIAO ; Hao-Nan XU ; Hao-Xin WANG ; Rong-Lu BI ; Hong-Ping HE ; Zhi-Yong JIANG
China Journal of Chinese Materia Medica 2023;48(21):5817-5821
Eight compounds were isolated from ethyl acetate fraction of 80% ethanol extract of the hulls of Garcinia mangostana by silica gel, Sephadex LH-20 column chromatography, as well as prep-HPLC methods. By HR-ESI-MS, MS, 1D and 2D NMR spectral analyses, the structures of the eight compounds were identified as 16-en mangostenone E(1), α-mangostin(2), 1,7-dihydroxy-2-(3-methy-lbut-2-enyl)-3-methoxyxanthone(3), cratoxyxanthone(4), 2,6-dimethoxy-para-benzoquinone(5), methyl orselinate(6), ficusol(7), and 4-(4-carboxy-2-methoxyphenoxy)-3,5-dimethoxybenzoic acid(8). Compound 1 was a new xanthone, and compound 4 was a xanthone dimer, compound 5 was a naphthoquinone. All compounds were isolated from this plant for the first time except compounds 2 and 3. Cytotoxic bioassay suggested that compounds 1, 2 and 4 possessed moderate cytotoxicity, suppressing HeLa cell line with IC_(50) va-lues of 24.3, 35.5 and 17.1 μmol·L~(-1), respectively. Compound 4 also could suppress K562 cells with an IC_(50) value of 39.8 μmol·L~(-1).
Humans
;
Garcinia mangostana/chemistry*
;
HeLa Cells
;
Antineoplastic Agents
;
Magnetic Resonance Spectroscopy
;
Xanthones/pharmacology*
;
Garcinia/chemistry*
;
Plant Extracts/chemistry*
;
Molecular Structure
4.Two cardenolide glycosides from the seed fairs of Asclepias curassavica and their cytotoxic activities.
Ai-Jia JI ; Qing MA ; Mu-Yan KONG ; Le-Yan LI ; Xin-Lian CHEN ; Zhong-Qiu LIU ; Jin-Jun WU ; Rong-Rong ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(3):202-209
Two cardenolide glycosides, corotoxigenin 3-O-[β-D-glucopyranosyl-(1→4)-6-deoxy-β-D-glucopyranoside] (1) and coroglaucigenin 3-O-[β-D-glucopyranosyl-(1→4)-6-deoxy-β-D-glucopyranoside] (2), were isolated from the seed fairs of Asclepias curassavica. The structures of 1-2 were determined based on the combination of the analysis of their MS, NMR spectroscopic data and acid hydrolysis. The inhibitory effects of compounds 1 and 2 on human colorectal carcinoma cells (HCT116), non-small cell lung carcinoma cells (A549) and hepatic cancer cells (SMMC-7721) were evaluated. The results showed that both compounds 1 and 2 significantly inhibited the viability, proliferation, and migration of A549, HCT116 and SMMC-7721 cells, suggesting that compounds 1 and 2 can be applied in the treatment of lung, colon and liver cancers in clinical practice. This study may not only provide a scientific basis for clarifying the active ingredients in A. curassavica, but also help to understand its antitumor activity, which can promote the application of A. curassavica in clinical treatment of various cancers.
Antineoplastic Agents/pharmacology*
;
Asclepias/chemistry*
;
Cardenolides/pharmacology*
;
Glycosides/pharmacology*
;
Humans
;
Seeds
5.Identification of multi-target anti-cancer agents from TCM formula by in silico prediction and in vitro validation.
Bao-Yue ZHANG ; Yi-Fu ZHENG ; Jun ZHAO ; De KANG ; Zhe WANG ; Lv-Jie XU ; Ai-Lin LIU ; Guan-Hua DU
Chinese Journal of Natural Medicines (English Ed.) 2022;20(5):332-351
Cancer is a complex disease associated with multiple gene mutations and malignant phenotypes, and multi-target drugs provide a promising therapy idea for the treatment of cancer. Natural products with abundant chemical structure types and rich pharmacological characteristics could be ideal sources for screening multi-target antineoplastic drugs. In this paper, 50 tumor-related targets were collected by searching the Therapeutic Target Database and Thomson Reuters Integrity database, and a multi-target anti-cancer prediction system based on mt-QSAR models was constructed by using naïve Bayesian and recursive partitioning algorithm for the first time. Through the multi-target anti-cancer prediction system, some dominant fragments that act on multiple tumor-related targets were analyzed, which could be helpful in designing multi-target anti-cancer drugs. Anti-cancer traditional Chinese medicine (TCM) and its natural products were collected to form a TCM formula-based natural products library, and the potential targets of the natural products in the library were predicted by multi-target anti-cancer prediction system. As a result, alkaloids, flavonoids and terpenoids were predicted to act on multiple tumor-related targets. The predicted targets of some representative compounds were verified according to literature review and most of the selected natural compounds were found to exert certain anti-cancer activity in vitro biological experiments. In conclusion, the multi-target anti-cancer prediction system is very effective and reliable, and it could be further used for elucidating the functional mechanism of anti-cancer TCM formula and screening for multi-target anti-cancer drugs. The anti-cancer natural compounds found in this paper will lay important information for further study.
Antineoplastic Agents/pharmacology*
;
Bayes Theorem
;
Drugs, Chinese Herbal/chemistry*
;
Humans
;
Medicine, Chinese Traditional
;
Neoplasms/drug therapy*
6.Recent advances on the structural modification of parthenolide and its derivatives as anticancer agents.
Chinese Journal of Natural Medicines (English Ed.) 2022;20(11):814-829
Parthenolide (PTL) is a sesquiterpene lactone derived from medicinal plant feverfew (Tanacetum parthenium). Recent studies have demonstrated that it has multiple pharmacological activities, especially in the treatment of various hematological and solid cancers. The superior anticancer activity of PTL suggests that it has the potential to be a first-line drug. However, due to the limited physical and chemical properties, as well as bioavailability, structural modification strategies are strongly recommended to improve the anticancer activity. This review describes representative PTL derivatives obtained by different modification strategies, which are reported to exert antiproliferative activities superior to the parent compound PTL. Furthermore, we also summarize their basic mechanisms on cancer-related signaling pathways, so as to explain the potential and characteristics of PTL and its derivatives in cancer therapy.
Sesquiterpenes/chemistry*
;
Tanacetum parthenium/metabolism*
;
Antineoplastic Agents/pharmacology*
;
Plant Extracts
;
Neoplasms/drug therapy*
7.Germacranolide sesquiterpenes from Carpesium cernuum and their anti-leukemia activity.
Chen YAN ; Qun LONG ; Yun-Dong ZHANG ; Gajendran BABU ; Madhu Varier KRISHNAPRIYA ; Jian-Fei QIU ; Jing-Rui SONG ; Qing RAO ; Ping YI ; Mao SUN ; Yan-Mei LI
Chinese Journal of Natural Medicines (English Ed.) 2021;19(7):528-535
In this study, three new germacranolide sesquiterpenes (1-3), together with six related known analogues (4-9) were isolated from the whole plant of Carpesium cernuum. Their structures were established by a combination of extensive NMR spectroscopic analysis, HR-ESIMS data, and ECD calculations. The anti-leukemia activities of all compounds towards three cell lines (HEL, KG-1a, and K562) were evaluated in vitro. Compounds 1-3 exhibited moderate cytotoxicity with IC
Antineoplastic Agents, Phytogenic/pharmacology*
;
Asteraceae/chemistry*
;
Drug Screening Assays, Antitumor
;
Humans
;
K562 Cells
;
Phytochemicals/pharmacology*
;
Sesquiterpenes, Germacrane/pharmacology*
8.Application of
Jing Hui YANG ; Fan Zhu MENG ; Cheryl L BESELER ; Hao LI ; Xiao Mei LIU ; Yin Pei GUO ; Li Li QIN ; Ru Yue ZUO ; Shu Ping REN
Biomedical and Environmental Sciences 2021;34(12):1010-1014
9.Screening combination ratio and exploring mechanism of Momordicae Semen and Epimedii Folium.
Yue-Yi KAN ; Ya-Jie WANG ; Jun LI ; Dao-Ran PANG ; Qing YANG ; Qi LI ; Yu-Jie LI ; Xiao-Gang WENG ; Ying CHEN ; Wei-Yan CAI ; Xiao-Xin ZHU
China Journal of Chinese Materia Medica 2020;45(2):374-382
The aim of this paper was to obtain low toxicity and high efficiency anti-tumor Chinese medicine through screening the combination ratios of Momordicae Semen and Epimedii Folium, and to explore the anti-tumor mechanism of the combination of two drugs by observing their effect on apoptosis-related proteins in cancer cells. Methyl thiazolyl tetrazolium(MTT) assay was used to observe the effect of drug combination on the proliferation of tumor cells from different tissue sources. The effects of the combination of the two drugs on tumor cells were analyzed by Compusyn software. Plate cloning assay was used to observe the effect of combination of these two drugs on the proliferation of A549 cells in vitro. The expression of reactive oxygen species(ROS) and apoptotic proteins p53, Bcl-2 and Bax were compared by using ROS kit and Western blot. Lewis lung cancer model was used to observe the anti-tumor effect of drugs in vivo. The results showed that the anti-tumor effect of their ethanol extract was more significant than that of water extract, and the anti-proliferation effect was strongest when the ratio was 1∶1(P<0.05). Compusyn analysis showed that the combination of the two drugs had synergistic effect. Further studies showed that after combined use, the number of clonogen formation in A549 cells was significantly reduced(P<0.01); ROS production was increased; the expression of apoptosis-related protein p53 was up-regulated, and the ratio of Bcl-2/Bax was decreased. In vivo animal study showed that the tumor inhibition rate was 53.06%(P<0.05) in the high dose group. As compared with the single use of the two drugs, the combination of the two drugs had more significant anti-proliferative effect on tumors, and the optimum ratio was 1∶1. The combination of the two drugs at a ratio of 1∶1 inhibited the proliferation of various tumor cells, and had no significant effect on normal liver cells LO2 when compared with other ratios. Therefore, it can be preliminarily inferred that the combination of the two drugs may have the effect of synergism and detoxification. Further studies showed that the combination of the two drugs can significantly inhibit the proliferation of A549 cells, and its mechanism may be related to the activation of endogenous apoptotic pathway. In vivo experiments also showed that the tumor inhibition rate increased with the increase of drug concentration.
A549 Cells
;
Animals
;
Antineoplastic Agents, Phytogenic/pharmacology*
;
Apoptosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Drugs, Chinese Herbal/pharmacology*
;
Epimedium/chemistry*
;
Humans
;
Lung Neoplasms/drug therapy*
;
Momordica/chemistry*
;
Neoplasms, Experimental/drug therapy*
;
Plant Leaves/chemistry*
10.Chemical constituents from green walnut husks and their antitumor activity in vitro.
Dong-Xue SUN ; Xiong-Fei GUO ; La-Tengtuya A ; Xiao-Ling MA ; Hong-Yan WEI ; Guo-Xu MA ; Lei-Ling SHI ; Jing ZHANG
China Journal of Chinese Materia Medica 2019;44(11):2278-2282
Fourteen chemical constituents, including 5-hydroxy-4-methoxy-1-tetralone(1), 4,8-dihydroxy-1-tetralone(2), 4,5-dihydroxy-α-tetralone(3), blumenol B(4), dehydrovomifoliol(5), megastigm-5-ene-3,9-diol(6), juglanin B(7), blumenol C(8), loliolide(9), oleracone B(10), syringarsinol(11), pinoresinol(12), methyl 4-hydroxy-3-methoxybenzoate(13), and isovanillic acid(14), were isolated from the dichloromethane fraction of 95% methanol extract of green walnut husks by silica gel and MCI column chromatography, and Pre-HPLC. Their structures were determined by spectroscopic methods, such as NMR, MS and so on. Among them, compounds 1, 4-6, 8-13 were isolated from the green walnut husks for the first time, and compounds 4-6, 8, 10, 12, 13 were isolated from the Juglans genus for the first time. All of isolates were detected their inhibitory activities against HeLa, HGC-27 and Ht-29 cell lines by the MTT assay. The result showed that compounds 2, 3, 7, 9 and 11 exhibited inhibitory activity against the tested cell line. The IC_(50) of 7 were 26.5, 9.0, 25.4 μmol·L~(-1), respectively.
Antineoplastic Agents, Phytogenic
;
isolation & purification
;
pharmacology
;
Chromatography, High Pressure Liquid
;
HT29 Cells
;
HeLa Cells
;
Humans
;
Juglans
;
chemistry
;
Molecular Structure
;
Phytochemicals
;
isolation & purification
;
pharmacology
;
Plant Extracts
;
chemistry

Result Analysis
Print
Save
E-mail