1.Inhibition of Ciliogenesis Enhances the Cellular Sensitivity to Temozolomide and Ionizing Radiation in Human Glioblastoma Cells.
Li WEI ; Wei MA ; Hui CAI ; Shao Peng PENG ; Huan Bing TIAN ; Ju Fang WANG ; Lan GAO ; Jin Peng HE
Biomedical and Environmental Sciences 2022;35(5):419-436
Objective:
To investigate the function of primary cilia in regulating the cellular response to temozolomide (TMZ) and ionizing radiation (IR) in glioblastoma (GBM).
Methods:
GBM cells were treated with TMZ or X-ray/carbon ion. The primary cilia were examined by immunostaining with Arl13b and γ-tubulin, and the cellular resistance ability was measured by cell viability assay or survival fraction assay. Combining with cilia ablation by IFT88 depletion or chloral hydrate and induction by lithium chloride, the autophagy was measured by acridine orange staining assay. The DNA damage repair ability was estimated by the kinetic curve of γH2AX foci, and the DNA-dependent protein kinase (DNA-PK) activation was detected by immunostaining assay.
Results:
Primary cilia were frequently preserved in GBM, and the induction of ciliogenesis decreased cell proliferation. TMZ and IR promoted ciliogenesis in dose- and time-dependent manners, and the suppression of ciliogenesis significantly enhanced the cellular sensitivity to TMZ and IR. The inhibition of ciliogenesis elevated the lethal effects of TMZ and IR via the impairment of autophagy and DNA damage repair. The interference of ciliogenesis reduced DNA-PK activation, and the knockdown of DNA-PK led to cilium formation and elongation.
Conclusion
Primary cilia play a vital role in regulating the cellular sensitivity to TMZ and IR in GBM cells through mediating autophagy and DNA damage repair.
Antineoplastic Agents, Alkylating/therapeutic use*
;
Brain Neoplasms/metabolism*
;
Cell Line, Tumor
;
DNA/therapeutic use*
;
Glioblastoma/metabolism*
;
Humans
;
Radiation, Ionizing
;
Temozolomide/therapeutic use*
2.Establishment of a mouse model bearing orthotopic temozolomide-resistant glioma.
Linyong SHI ; Hong LI ; Junwei GU ; Chong SONG ; Junjie LI ; Lei CHEN ; Qiang ZHOU ; Songtao QI ; Yuntao LU
Journal of Southern Medical University 2021;41(1):69-74
OBJECTIVE:
To establish a mouse model bearing orthotopic temozolomide (TMZ)-resistant glioma that mimics the development of drug resistance in gliomas
METHODS:
Seventy-eight adult C57BL/6 mice were randomly divided into 6 groups (
RESULTS:
The mouse models bearing TMZresistant glioma was successfully established. The cells from the high-dose induced group showed a significantly higher colony-forming rate than those from the high-dose control group (
CONCLUSIONS
Progressive increase of TMZ doses in mice bearing orthotopic gliomas can effectively induce TMZ resistance of the gliomas.
Animals
;
Antineoplastic Agents, Alkylating/pharmacology*
;
Brain Neoplasms/drug therapy*
;
Cell Line, Tumor
;
Disease Models, Animal
;
Drug Resistance, Neoplasm
;
Glioma/drug therapy*
;
Mice
;
Mice, Inbred C57BL
;
Temozolomide/therapeutic use*
3.DNMT1 mediates chemosensitivity by reducing methylation of miRNA-20a promoter in glioma cells.
Daoyang ZHOU ; Yingfeng WAN ; Dajiang XIE ; Yirong WANG ; Junhua WEI ; Qingfeng YAN ; Peng LU ; Lianjie MO ; Jixi XIE ; Shuxu YANG ; Xuchen QI
Experimental & Molecular Medicine 2015;47(9):e182-
Although methyltransferase has been recognized as a major element that governs the epigenetic regulation of the genome during temozolomide (TMZ) chemotherapy in glioblastoma multiforme (GBM) patients, its regulatory effect on glioblastoma chemoresistance has not been well defined. This study investigated whether DNA methyltransferase (DNMT) expression was associated with TMZ sensitivity in glioma cells and elucidated the underlying mechanism. DNMT expression was analyzed by western blotting. miR-20a promoter methylation was evaluated by methylation-specific PCR. Cell viability and apoptosis were assessed using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and TdT-mediated dUTP-biotin nick end labeling assays, respectively. The results showed that compared with parental U251 cells, DNMT1 expression was downregulated, miR-20a promoter methylation was attenuated and miR-20a levels were elevated in TMZ-resistant U251 cells. Methyltransferase inhibition by 5-aza-2\'-deoxycytidine treatment reduced TMZ sensitivity in U251 cells. In U251/TM cells, DNMT1 expression was negatively correlated with miR-20a expression and positively correlated with TMZ sensitivity and leucine-rich repeats and immunoglobulin-like domains 1 expression; these effects were reversed by changes in miR-20a expression. DNMT1 overexpression induced an increase in U251/TM cell apoptosis that was inhibited by the miR-20a mimic, whereas DNMT1 silencing attenuated U251/TM cell apoptosis in a manner that was abrogated by miR-20a inhibitor treatment. Tumor growth of the U251/TM xenograft was inhibited by pcDNA-DNMT1 pretreatment and boosted by DNMT1-small hairpin RNA pretreatment. In summary, DNMT1 mediated chemosensitivity by reducing methylation of the microRNA-20a promoter in glioma cells.
Animals
;
Antineoplastic Agents, Alkylating/*pharmacology/therapeutic use
;
Apoptosis/drug effects
;
Brain/drug effects/metabolism/pathology
;
Brain Neoplasms/drug therapy/*genetics/pathology
;
DNA (Cytosine-5-)-Methyltransferase/antagonists & inhibitors/*genetics/metabolism
;
DNA Methylation
;
Dacarbazine/*analogs & derivatives/pharmacology/therapeutic use
;
Drug Resistance, Neoplasm
;
Female
;
Gene Expression Regulation, Neoplastic
;
Glioma/drug therapy/*genetics/pathology
;
Humans
;
Mice, Inbred C57BL
;
MicroRNAs/*genetics
;
Promoter Regions, Genetic
4.Effect of brentuximab vedotin combined with chlormethine hydrochloride on the treatment of 6 patients with relapsed and refractory Hodgkin lymphoma.
Zhigang CAO ; Zhihong WANG ; Junzhong SUN ; Chaojin PENG ; Shaomei FENG ; Xiaoyan ZHOU ; Qingming YANG
Chinese Journal of Hematology 2015;36(7):575-577
OBJECTIVETo observe the clinical efficacy and side effects of brentuximab vedotin (BV) plus chlormethine hydrochloride (CH) in patients with relapsed and refractory Hodgkin lymphoma (HL) after failure with BV alone.
METHODSFrom March, 2014 to December, 2014, 6 patients who failed with BV monotherapy were enrolled in this study. The chemotherapy regimen consisted of BV (1.2-1.8 mg/kg, iv. gtt, d1) and CH (6 mg/m2, iv. gtt, d1) was given for 3 weeks as one course, and all patients received about 3-8 courses of chemotherapy, with an median of 4 courses. Clinical efficacy and adverse events were assessed and observed by radiographic examination and serological detection.
RESULTSAmong 6 patients, the overall response rate was 100% with 2 complete remission and 4 partial remission. The main adverse events were grade I (2 patients) and IV (2 patients) bone marrow depression, grade II (2 patients)gastrointestinal reaction, grade I (1 patient) increase of transaminase and myocardial enzyme and grade I (1 patient) mouth ulcers.
CONCLUSIONThe combination of BV and CH in the treatment of relapsed and refractory HL after failure with BV alone was high effective and the toxicities were well tolerable.
Antineoplastic Agents, Alkylating ; therapeutic use ; Hodgkin Disease ; drug therapy ; Humans ; Immunoconjugates ; therapeutic use ; Mechlorethamine ; therapeutic use
5.Does Early Postsurgical Temozolomide Plus Concomitant Radiochemotherapy Regimen Have Any Benefit in Newly-diagnosed Glioblastoma Patients? A Multi-center, Randomized, Parallel, Open-label, Phase II Clinical Trial.
Ying MAO ; Yu YAO ; Li-Wei ZHANG ; Yi-Cheng LU ; Zhong-Ping CHEN ; Jian-Min ZHANG ; Song-Tao QI ; Chao YOU ; Ren-Zhi WANG ; Shu-Yuan YANG ; Xiang ZHANG ; Ji-Sheng WANG ; Ju-Xiang CHEN ; Qun-Ying YANG ; Hong SHEN ; Zhi-Yong LI ; Xiang WANG ; Wen-Bin MA ; Xue-Jun YANG ; Hai-Ning ZHEN ; Liang-Fu ZHOU
Chinese Medical Journal 2015;128(20):2751-2758
BACKGROUNDThe radiochemotherapy regimen concomitantly employing temozolomide (TMZ) chemotherapy and radiotherapy (RT) 4 weeks after surgery, followed by 6 cycles of TMZ is a common treatment for glioblastoma (GBM). However, its median overall survival (OS) is only 14.6 months. This study was to explore the effectiveness and safety of early TMZ chemotherapy between surgery and chemoradiotherapy plus the standard concomitant radiochemotherapy regimen.
METHODSA randomized, parallel group, open-label study of 99 newly diagnosed GBM patients was conducted at 10 independent Chinese neurosurgical departments from June 2008 to June 2012. Patients were treated with concomitant radiochemotherapy regimen plus early postsurgical temozolomide (early TMZ group) or standard concomitant radiochemotherapy regimen (control group). Overall response was assessed based on objective tumor assessments, administration of corticosteroid and neurological status test. Hematological, biochemical, laboratory, adverse event (AE), and neurological condition were measured for 24 months of follow-up. The primary efficacy endpoint of this study was overall survival (OS). The secondary endpoint was progression free survival (PFS).
RESULTSThe median OS time in the early TMZ group was 17.6 months, compared with 13.2 months in the control group (log-rank test P = 0.021). In addition, the OS rate in the early TMZ group was higher at 6, 12, and 18 months than in the control group, respectively (P < 0.05). The median PFS time was 8.7 months in the early TMZ group and 10.4 months in the control group (log-rank test P = 0.695). AEs occurred in 29 (55.8%) and 31(73.8%) patients respectively in early and control groups, including nausea (15.4% vs. 33.3%), vomiting (7.7% vs. 28.6%), fever (7.7% vs. 11.9%), and headache (3.8% vs. 23.8%). Only 30.8% and 33.3% were drug-related, respectively.
CONCLUSIONSAddition of TMZ chemotherapy in the early break of the standard concomitant radiochemotherapy regimen was well tolerated and significantly improved the OS of the GBM patients, compared with standard concomitant radiochemotherapy regimen. However, a larger randomized trial is warranted to verify these results.
Adult ; Aged ; Antineoplastic Agents, Alkylating ; therapeutic use ; Chemoradiotherapy ; methods ; Dacarbazine ; analogs & derivatives ; therapeutic use ; Glioblastoma ; drug therapy ; radiotherapy ; Humans ; Middle Aged ; Treatment Outcome ; Young Adult
6.Trabectedin therapy as an emerging treatment strategy for recurrent platinum-sensitive ovarian cancer.
José Antonio LÓPEZ-GUERRERO ; Ignacio ROMERO ; Andrés POVEDA
Chinese Journal of Cancer 2015;34(1):41-49
Epithelial ovarian cancer (OC) is a common gynecologic malignancy in women. The standard treatment for OC is maximal cytoreductive surgical debulking followed by platinum-based chemotherapy. Despite the high response rate to primary therapy, approximately 85% of patients will develop recurrent ovarian cancer (ROC). This review identifies the clinical use of trabectedin in the treatment algorithm for ROC, with specific emphasis on platinum-sensitive ROC, for which trabectedin in combination with pegylated liposomal doxorubicin has been approved as a treatment protocol. The main mechanisms of action of trabectedin at the cellular level and in the tumor microenvironment is also discussed as bases for identifying biomarkers for selecting patients who may largely benefit from trabectedin-based therapies.
Antineoplastic Agents, Alkylating
;
therapeutic use
;
Clinical Trials as Topic
;
DNA Damage
;
Dioxoles
;
administration & dosage
;
pharmacology
;
therapeutic use
;
Doxorubicin
;
administration & dosage
;
analogs & derivatives
;
Female
;
Humans
;
Neoplasm Recurrence, Local
;
drug therapy
;
Neoplasms, Glandular and Epithelial
;
drug therapy
;
Ovarian Neoplasms
;
drug therapy
;
Polyethylene Glycols
;
administration & dosage
;
Tetrahydroisoquinolines
;
administration & dosage
;
pharmacology
;
therapeutic use
;
Tumor Microenvironment
7.Prediction of Response to Concurrent Chemoradiotherapy with Temozolomide in Glioblastoma: Application of Immediate Post-Operative Dynamic Susceptibility Contrast and Diffusion-Weighted MR Imaging.
Eun Kyoung LEE ; Seung Hong CHOI ; Tae Jin YUN ; Koung Mi KANG ; Tae Min KIM ; Se Hoon LEE ; Chul Kee PARK ; Sung Hye PARK ; Il Han KIM
Korean Journal of Radiology 2015;16(6):1341-1348
OBJECTIVE: To determine whether histogram values of the normalized apparent diffusion coefficient (nADC) and normalized cerebral blood volume (nCBV) maps obtained in contrast-enhancing lesions detected on immediate post-operative MR imaging can be used to predict the patient response to concurrent chemoradiotherapy (CCRT) with temozolomide (TMZ). MATERIALS AND METHODS: Twenty-four patients with GBM who had shown measurable contrast enhancement on immediate post-operative MR imaging and had subsequently undergone CCRT with TMZ were retrospectively analyzed. The corresponding histogram parameters of nCBV and nADC maps for measurable contrast-enhancing lesions were calculated. Patient groups with progression (n = 11) and non-progression (n = 13) at one year after the operation were identified, and the histogram parameters were compared between the two groups. Receiver operating characteristic (ROC) analysis was used to determine the best cutoff value for predicting progression. Progression-free survival (PFS) was determined with the Kaplan-Meier method and the log-rank test. RESULTS: The 99th percentile of the cumulative nCBV histogram (nCBV C99) on immediate post-operative MR imaging was a significant predictor of one-year progression (p = 0.033). ROC analysis showed that the best cutoff value for predicting progression after CCRT was 5.537 (sensitivity and specificity were 72.7% and 76.9%, respectively). The patients with an nCBV C99 of < 5.537 had a significantly longer PFS than those with an nCBV C99 of ≥ 5.537 (p = 0.026). CONCLUSION: The nCBV C99 from the cumulative histogram analysis of the nCBV from immediate post-operative MR imaging may be feasible for predicting glioblastoma response to CCRT with TMZ.
Adult
;
Aged
;
Antineoplastic Agents, Alkylating/*therapeutic use
;
Brain/pathology/radiography
;
Brain Neoplasms/*drug therapy/mortality/radiography
;
Chemoradiotherapy
;
Dacarbazine/*analogs & derivatives/therapeutic use
;
Diffusion Magnetic Resonance Imaging
;
Disease Progression
;
Disease-Free Survival
;
Female
;
Glioblastoma/*drug therapy/mortality/radiography
;
Humans
;
Kaplan-Meier Estimate
;
Male
;
Middle Aged
;
Proportional Hazards Models
;
ROC Curve
;
Retrospective Studies
8.Pleurotus nebrodensis polysaccharide (PN-S) enhances the immunity of immunosuppressed mice.
Hai-Yan CUI ; Chang-Lu WANG ; Yu-Rong WANG ; Zhen-Jing LI ; Mian-Hua CHEN ; Feng-Juan LI ; Yan-Ping SUN
Chinese Journal of Natural Medicines (English Ed.) 2015;13(10):760-766
In the present study, the effects of Pleurotus nebrodensis polysaccharide (PN-S) on the immune functions of immunosuppressed mice were determined. The immunosuppressed mouse model was established by treating the mice with cyclophosphamide (40 mg/kg/2d, CY) through intraperitoneal injection. The results showed that PN-S administration significantly reversed the CY-induced weight loss, increased the thymic and splenic indices, and promoted proliferation of T lymphocyte, B lymphocyte, and macrophages. PN-S also enhanced the activity of natural killer cells and increased the immunoglobulin M (IgM) and immunoglobulin G (IgG) levels in the serum. In addition, PN-S treatment significantly increased the phagocytic activity of mouse peritoneal macrophages. PN-S also increased the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ), and nitric oxide (NOS) in splenocytes. qRT-PCR results also indicated that PN-S increased the mRNA expression of IL-6, TNF-α, INF-γ, and nitric oxide synthase (iNOS) in the splenocytes. These results suggest that PN-S treatment enhances the immune function of immunosuppressed mice. This study may provide a basis for the application of this fungus in adjacent immunopotentiating therapy against cancer and in the treatment of chemotherapy-induced immunosuppression.
Animals
;
Antineoplastic Agents, Alkylating
;
Biological Products
;
pharmacology
;
therapeutic use
;
Cell Line
;
Cyclophosphamide
;
Immunity
;
drug effects
;
Immunologic Factors
;
pharmacology
;
therapeutic use
;
Immunosuppression
;
Interferon-gamma
;
metabolism
;
Interleukin-6
;
metabolism
;
Macrophages
;
drug effects
;
metabolism
;
Male
;
Mice, Inbred BALB C
;
Neoplasms
;
drug therapy
;
immunology
;
Nitric Oxide
;
metabolism
;
Nitric Oxide Synthase Type II
;
metabolism
;
Phagocytosis
;
drug effects
;
Pleurotus
;
chemistry
;
Polysaccharides
;
pharmacology
;
therapeutic use
;
Tumor Necrosis Factor-alpha
;
metabolism
9.Toxicity Profile of Temozolomide in the Treatment of 300 Malignant Glioma Patients in Korea.
So Hyun BAE ; Min Jung PARK ; Min Mi LEE ; Tae Min KIM ; Se Hoon LEE ; Sung Yun CHO ; Young Hoon KIM ; Yu Jung KIM ; Chul Kee PARK ; Chae Yong KIM
Journal of Korean Medical Science 2014;29(7):980-984
This study evaluated the toxicity profiles of temozolomide in the treatment of malignant glioma as either concurrent or adjuvant chemotherapy. We retrospectively reviewed the medical records of 300 malignant glioma patients treated with temozolomide in two medical institutions in Korea between 2004 and 2010. Two hundred nine patients experienced a total of 618 toxicities during temozolomide therapy. A total of 84.8% of the 618 toxicities were Common Terminology Criteria for Adverse Events (CTCAE) grade 1 or 2, while 15.2% were grade 3 or 4. Among the hematologic toxicities, thrombocytopenia (13.7%), anemia (11.0%), and AST/ALT increases (7.0%) were common. Among the non-hematologic toxicities, nausea (44.3%), vomiting (37.0%), and anorexia (14.3%) were the three most common toxicities. There was no mortality due to temozolomide. Although temozolomide showed many types of toxicities, the majority of the toxicities were tolerable and of lower grade. Gastrointestinal troubles are the most common toxicities in Korean patients treated with temozolomide.
Adolescent
;
Adult
;
Aged
;
Aged, 80 and over
;
Anorexia/etiology
;
Antineoplastic Agents, Alkylating/adverse effects/*therapeutic use
;
Brain Neoplasms/*drug therapy/pathology/radiotherapy
;
Dacarbazine/adverse effects/*analogs & derivatives/therapeutic use/toxicity
;
Female
;
Glioma/*drug therapy/pathology/radiotherapy
;
Hematologic Diseases/etiology
;
Humans
;
Male
;
Middle Aged
;
Nausea/drug therapy/etiology
;
Neoplasm Staging
;
Republic of Korea
;
Retrospective Studies
;
Severity of Illness Index
;
Sex Factors
;
Vomiting/drug therapy/etiology
;
Young Adult
10.Radiotherapy of high-grade gliomas: current standards and new concepts, innovations in imaging and radiotherapy, and new therapeutic approaches.
Chinese Journal of Cancer 2014;33(1):16-24
The current standards in radiotherapy of high-grade gliomas (HGG) are based on anatomic imaging techniques, usually computed tomography (CT) scanning and magnetic resonance imaging (MRI). The guidelines vary depending on whether the HGG is a histological grade 3 anaplastic glioma (AG) or a grade 4 glioblastoma multiforme (GBM). For AG, T2-weighted MRI sequences plus the region of contrast enhancement in T1 are considered for the delineation of the gross tumor volume (GTV), and an isotropic expansion of 15 to 20 mm is recommended for the clinical target volume (CTV). For GBM, the Radiation Therapy Oncology Group favors a two-step technique, with an initial phase (CTV1) including any T2 hyperintensity area (edema) plus a 20 mm margin treated with up to 46 Gy in 23 fractions, followed by a reduction in CTV2 to the contrast enhancement region in T1 with an additional 25 mm margin. The European Organisation of Research and Treatment of Cancer recommends a single-phase technique with a unique GTV, which comprises the T1 contrast enhancement region plus a margin of 20 to 30 mm. A total dose of 60 Gy in 30 fractions is usually delivered for GBM, and a dose of 59.4 Gy in 33 fractions is typically given for AG. As more than 85% of HGGs recur in field, dose-escalation studies have shown that 70 to 75 Gy can be delivered in 6 weeks with relevant toxicities developing in <10% of the patients. However, the only randomized dose-escalation trial, in which the boost dose was guided by conventional MRI, did not show any survival advantage of this treatment over the reference arm. HGGs are amongst the most infiltrative and heterogeneous tumors, and it was hypothesized that the most highly aggressive areas were missed; thus, better visualization of these high-risk regions for radiation boost could decrease the recurrence rate. Innovations in imaging and linear accelerators (LINAC) could help deliver the right doses of radiation to the right subvolumes according to the dose-painting concept. Advanced imaging techniques provide functional information on cellular density (diffusion MRI), angiogenesis (perfusion MRI), metabolic activity and cellular proliferation [positron emission tomography (PET) and magnetic resonance spectroscopy (MRS)]. All of these non-invasive techniques demonstrated good association between the images and histology, with up to 40% of HGGs functionally presenting a high activity within the non-contrast-enhanced areas in T1. New LINAC technologies, such as intensity-modulated and stereotactic radiotherapy, help to deliver a simultaneous integrated boost (SIB) > 60 Gy. Trials delivering a SIB into a biological GTV showed the feasibility of this treatment, but the final results, in terms of clinical benefits for HGG patients, are still pending. Many issues have been identified: the variety of MRI and PET machines (and amino-acid tracers), the heterogeneity of the protocols used for image acquisition and post-treatment, the geometric distortion and the unreliable algorithms for co-registration of brain anatomy with functional maps, and the semi-quiescent but highly invasive HGG cells. These issues could be solved by the homogenization of the protocols and software applications, the simultaneous acquisition of anatomic and functional images (PET-MRI machines), the combination of complementary imaging tools (perfusion and diffusion MRI), and the concomitant addition of some ad hoc targeted drugs against angiogenesis and invasiveness to chemoradiotherapy. The integration of these hybrid data will construct new synthetic metrics for fully individualized treatments.
Antineoplastic Agents, Alkylating
;
therapeutic use
;
Brain Neoplasms
;
diagnosis
;
pathology
;
radiotherapy
;
Dacarbazine
;
analogs & derivatives
;
therapeutic use
;
Diffusion Tensor Imaging
;
Glioblastoma
;
diagnosis
;
drug therapy
;
pathology
;
radiotherapy
;
Glioma
;
diagnosis
;
pathology
;
radiotherapy
;
Humans
;
Magnetic Resonance Imaging
;
Magnetic Resonance Spectroscopy
;
Neoplasm Grading
;
Particle Accelerators
;
Positron-Emission Tomography
;
Radiotherapy Dosage
;
Radiotherapy, Intensity-Modulated
;
methods

Result Analysis
Print
Save
E-mail