1.Cardiovascular complications in malaria: a review.
Yu LI ; Zhong-Yuan ZHENG ; Yu ZHANG ; Shui-Qing QU ; Shuo-Qiu DENG ; Yue DAI ; Cheng-Cheng LIU ; Tuo LIU ; Li-Na CHEN ; Yu-Jie LI
China Journal of Chinese Materia Medica 2023;48(18):4902-4907
Malaria, one of the major global public health events, is a leading cause of mortality and morbidity among children and adults in tropical and subtropical regions(mainly in sub-Saharan Africa), threatening human health. It is well known that malaria can cause various complications including anemia, blackwater fever, cerebral malaria, and kidney damage. Conventionally, cardiac involvement has not been listed as a common reason affecting morbidity and mortality of malaria, which may be related to ignored cases or insufficient diagnosis. However, the serious clinical consequences such as acute coronary syndrome, heart failure, and malignant arrhythmia caused by malaria have aroused great concern. At present, antimalarials are commonly used for treating malaria in clinical practice. However, inappropriate medication can increase the risk of cardiovascular diseases and cause severe consequences. This review summarized the research advances in the cardiovascular complications including acute myocardial infarction, arrhythmia, hypertension, heart failure, and myocarditis in malaria. The possible mechanisms of cardiovascular diseases caused by malaria were systematically expounded from the hypotheses of cell adhesion, inflammation and cytokines, myocardial apoptosis induced by plasmodium toxin, cardiac injury secondary to acute renal failure, and thrombosis. Furthermore, the effects of quinolines, nucleoprotein synthesis inhibitors, and artemisinin and its derivatives on cardiac structure and function were summarized. Compared with the cardiac toxicity of quinolines in antimalarial therapy, the adverse effects of artemisinin-derived drugs on heart have not been reported in clinical studies. More importantly, the artemisinin-derived drugs demonstrate favorable application prospects in the prevention and treatment of cardiovascular diseases, and are expected to play a role in the treatment of malaria patients with cardiovascular diseases. This review provides reference for the prevention and treatment of malaria-related cardiovascular complications as well as the safe application of antimalarials.
Child
;
Adult
;
Humans
;
Antimalarials/pharmacology*
;
Cardiovascular Diseases/drug therapy*
;
Artemisinins/pharmacology*
;
Quinolines
;
Malaria, Cerebral/drug therapy*
;
Heart Failure/drug therapy*
;
Arrhythmias, Cardiac/drug therapy*
2.Antimalarial and neuroprotective ent-abietane diterpenoids from the aerial parts of Phlogacanthus curviflorus.
Jia LI ; Xiao MENG ; Chengyue YIN ; Lixia ZHANG ; Bin LIN ; Peng LIU ; Lingjuan ZHU ; Haifeng WANG ; Hongwei LIU ; Xue ZHANG ; Xinsheng YAO
Chinese Journal of Natural Medicines (English Ed.) 2023;21(8):619-630
Six new ent-abietane diterpenoids, abientaphlogatones A-F (1-6), along with two undescribed ent-abietane diterpenoid glucosides, abientaphlogasides A-B (7-8) and four known analogs were isolated from the aerial parts ofPhlogacanthus curviflorus (P. curviflorus). The structures of these compounds were determined using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), one-dimensional and two-dimensional nuclear magnetic resonance (NMR) spectroscopy, electronic circular dichroism (ECD) spectra, and quantum chemical calculations. Notably, compounds 5 and 6 represented the first reported instances of ent-norabietane diterpenoids from the genus Phlogacanthus. In the β-hematin formation inhibition assay, compounds 2, 4, 7-10, and 12 displayed antimalarial activity, with IC50 values of 12.97-65.01 μmol·L-1. Furthermore, compounds 4, 5, 8, and 10 demonstrated neuroprotective activity in PC12 cell injury models induced by H2O2 and MPP+.
Abietanes/pharmacology*
;
Antimalarials
;
Hydrogen Peroxide
;
Biological Assay
;
Plant Components, Aerial
3.Microbial transformation of artemisinin and its derivatives.
Xin-Na GAO ; Jing-Jie KANG ; Peng SUN ; Yi-Fan ZHAO ; Dong ZHANG ; Lan YANG ; Yue MA ; Hui-Min GAO
China Journal of Chinese Materia Medica 2023;48(11):2876-2895
Microbial transformation is an efficient enzymatic approach for the structural modification of exogenous compounds to obtain derivatives. Compared with traditional chemical synthesis, the microbial transformation has in fact the undoubtable advantages of strong region-and stereo-selectivity, and a low environmental and economic impact on the production process, which can achieve the reactions challenging to chemical synthesis. Because microbes are equipped with a broad-spectrum of enzymes and therefore can metabolize various substrates, they are not only a significant route for obtaining novel active derivatives, but also an effective tool for mimicking mammal metabolism in vitro. Artemisinin, a sesquiterpene with a peroxy-bridged structure serving as the main active functional group, is a famous antimalarial agent discovered from Artemisia annua L. Some sesquiterpenoids, such as dihydroartemisinin, artemether, and arteether, have been developed on the basis of artemisinin, which have been successfully marketed and become the first-line antimalarial drugs recommended by WHO. As revealed by pharmacological studies, artemisinin and its derivatives have exhibited extensive biological activities, including antimalarial, antitumor, antiviral, anti-inflammatory, and immunomodulatory. As an efficient approach for structural modification, microbial transformation of artemisinin and its derivatives is an increasingly popular strategy that attracts considerable attention recently, and numerous novel derivatives have been discovered. Herein, this paper reviewed the microbial transformation of artemisinin and its artemisinin, including microbial strains, culture conditions, product isolation and yield, and biological activities, and summarized the advances in microbial transformation in obtaining active derivatives of artemisinin and the simulation of in vivo metabolism of drugs.
Animals
;
Antimalarials/pharmacology*
;
Antiviral Agents
;
Artemether
;
Artemisinins
;
Mammals
4.Research progress on chemical constituents and pharmacological effects of Ajania plants.
Min YAO ; Xin-Jun DI ; Zhi-Xian JING ; Jun-Mao LI ; Zhi-Qiang LI ; Ming-Ming YUAN ; Ren CI ; Yu-Lin FENG ; Shi-Lin YANG
China Journal of Chinese Materia Medica 2023;48(11):2904-2918
Ajania belonging to the subtribe Artemisiinae of Anthemideae(Asteraceae) is a genus of semi-shrubs closely related to Chrysanthemum. There are 24 species of Ajania in northwestern China, most of which are folk herbal medicines with strong stress tolerance. Modern medical studies have demonstrated that the chemical constituents of Ajania mainly include terpenoids, flavonoids, phenylpropanoids, alkynes, and essential oils. These compounds endow the plants with antimicrobial, anti-inflammatory, antitumor, antimalarial, antioxidant, and insecticide effects. In this study, we reviewed the research progress in the chemical constituents and pharmacological activities of Ajania, aiming to provide reference for the further research and development of Ajania.
Asteraceae
;
Chrysanthemum
;
Alkynes
;
Antimalarials
;
Antioxidants/pharmacology*
5.A close contact of coronavirus disease 2019 with severe imported malaria: a case report.
S OUYANG ; Y ZHAI ; R FENG ; Y XIONG ; L YU ; C LIU
Chinese Journal of Schistosomiasis Control 2023;35(4):421-423
This article presents a severe cerebral malaria patient in shock with a close contact of COVID-19 that was successfully cured in a negative pressure ward during the global pandemic of COVID-19. The patient experienced a sudden onset of high fever and coma in a designated isolation hotel after returning from Africa, and was transferred to a designated hospital. Following antimalarial therapy, blood pressure elevation, increase of blood volume, bedside hemodialysis, mechanical ventilation, plasma and platelet transfusions, the case gradual recovered.
Humans
;
COVID-19
;
Malaria/drug therapy*
;
Antimalarials/therapeutic use*
;
Africa
;
Travel
6.Prevalence of antifolate drug resistance markers in Plasmodium vivax in China.
Fang HUANG ; Yanwen CUI ; He YAN ; Hui LIU ; Xiangrui GUO ; Guangze WANG ; Shuisen ZHOU ; Zhigui XIA
Frontiers of Medicine 2022;16(1):83-92
The dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes of Plasmodium vivax, as antifolate resistance-associated genes were used for drug resistance surveillance. A total of 375 P. vivax isolates collected from different geographical locations in China in 2009-2019 were used to sequence Pvdhfr and Pvdhps. The majority of the isolates harbored a mutant type allele for Pvdhfr (94.5%) and Pvdhps (68.2%). The most predominant point mutations were S117T/N (77.7%) in Pvdhfr and A383G (66.8%) in Pvdhps. Amino acid changes were identified at nine residues in Pvdhfr. A quadruple-mutant haplotype at 57, 58, 61, and 117 was the most frequent (57.4%) among 16 distinct Pvdhfr haplotypes. Mutations in Pvdhps were detected at six codons, and the double-mutant A383G/A553G was the most prevalent (39.3%). Pvdhfr exhibited a higher mutation prevalence and greater diversity than Pvdhps in China. Most isolates from Yunnan carried multiple mutant haplotypes, while the majority of samples from temperate regions and Hainan Island harbored the wild type or single mutant type. This study indicated that the antifolate resistance levels of P. vivax parasites were different across China and molecular markers could be used to rapidly monitor drug resistance. Results provided evidence for updating national drug policy and treatment guidelines.
Antimalarials/pharmacology*
;
China/epidemiology*
;
Drug Combinations
;
Drug Resistance/genetics*
;
Folic Acid Antagonists/pharmacology*
;
Humans
;
Mutation
;
Plasmodium vivax/genetics*
;
Prevalence
7.Research advances of biosynthesis, in vivo analysis and pharmacokinetics of chemical constituents in Artemisiae Annuae Herba.
Ke-Yu ZHANG ; Chun-Qing FU ; Li MA ; Man-Yuan WANG ; Feng QIU
China Journal of Chinese Materia Medica 2021;46(2):347-358
Artemisiae Annuae Herba is a traditional Chinese medicine for clearing deficiency and heat. It is the only natural source of artemisinin, which is a specific antimalarial drug, and has been widely concerned all over the world. In addition to artemisinin, Artemisiae Annuae Herba also contains many sesquiterpenes, coumarins, flavonoids, volatile oils, polysaccharides and other chemical components, which show antipyretic, anti-inflammatory, antiviral microorganisms, anti-asthma, anti-oxidation, anti-tumor and other pharmacological activities. In addition to their own pharmacological activities, some components could enhance the antimalarial activity of artemisinin through different mechanisms at absorption and metabolism in vivo. In order to understand the pharmacokinetic characte-ristics of the chemical constituents contained in Artemisiae Annuae Herba and provide reference for the full development and clinical utilization of Artemisiae Annuae Herba resources in China, this present paper systematically collated the modern research literatures, and summarized the biosynthesis, in vivo analysis and pharmacokinetics of the chemical constituents in Artemisiae Annuae Herba.
Antimalarials
;
China
;
Drugs, Chinese Herbal
;
Medicine, Chinese Traditional
;
Oils, Volatile
8.Reasearch on lipid metabolism of Plasmodium and antimalarial mechanism of artemisinin.
Shuo LI ; Cang-Hai LI ; Ting-Liang JIANG
China Journal of Chinese Materia Medica 2021;46(18):4849-4864
As a unicellular organism, Plasmodium displays a panoply of lipid metabolism pathways that are seldom found together in a unicellular organism. These pathways mostly involve the Plasmodium-encoded enzymatic machinery and meet the requirements of membrane synthesis during the rapid cell growth and division throughout the life cycle. Different lipids have varied synthesis and meta-bolism pathways. For example, the major phospholipids are synthesized via CDP-diacylglycerol-dependent pathway in prokaryotes and de novo pathway in eukaryotes, and fatty acids are synthesized mainly via type Ⅱ fatty acid synthesis pathway. The available studies have demonstrated the impacts of artemisinin and its derivatives, the front-line compounds against malaria, on the lipid metabolism of Plasmodium. Therefore, this article reviewed the known lipid metabolism pathways and the effects of artemisinin and its derivatives on these pathways, aiming to deepen the understanding of lipid synthesis and metabolism in Plasmodium and provide a theoretical basis for the research on the mechanisms and drug resistance of artemisinin and other anti-malarial drugs.
Antimalarials/pharmacology*
;
Artemisinins/therapeutic use*
;
Humans
;
Lipid Metabolism
;
Malaria/drug therapy*
;
Plasmodium
9.Method for rapid synchronization of different growth cycles of Plasmodium falciparum in vitro and application in differential gene expression profile of 3D7 after dihydroartemisinin treatment.
Zhong-Yuan ZHENG ; Li-Na CHEN ; Ting YANG ; Hui LIU ; Shui-Qing QU ; Yuan-Min YANG ; Yu-Jie LI ; Shu-Qiu ZHANG
China Journal of Chinese Materia Medica 2020;45(10):2454-2463
Plasmodium culture in vitro is often used as an antimalarial drug evaluation model, but the lifecycle of P. falciparum culture in vitro tends to be disordered, which affects the research and evaluation of antimalarial drug mechanism in vitro. By combining magnetic bead separation method with sorbitol synchronization method, a synchronization method was constructed to quickly acquire different lifecycles of P. falciparum and obtain large amounts of parasite with a narrow synchronization window in a short period. Furthermore, the dihydroartemisinin(DHA) was used to treat the early trophozoite phase of P. falciparum 3 D7 for 4 h. Then mRNA was extracted and RNA-seq was conducted to analyze the differential expression of mRNA after drug treatment and obtain the differential gene expression profile. Differential expression of up-regulated genes and down-regulated genes was analyzed according to the screening criteria of |log_2FC|>1 and P<0.05. There, 262 genes were up-regulated and 77 genes were down-regulated. GO functional enrichment analysis of all the differentially expressed genes showed that the enrichment items mainly included cell membrane components, transporter activity, serine/threonine kinase activity, Maurer's clefts(MCs), rhoptry, antigen variation and immune evasion. The enrichment of KEGG pathway included malaria, fatty acid metabolism and peroxisome. Protein-protein interaction(PPI) analysis showed that the down-regulated genes in the modules with high degree of association included rhoptry, myosin complex, transporter and other genes related to the important life activities of malaria invasion and immune escape; the up-regulated genes were mainly related to various toxic exportins of malaria, such as PfSBP1 of MCs. qRT-PCR was used to verify the expression level of some genes, and most of the results were the same as the sequencing results. SBP1 was significantly up-regulated, while some antigenic protein expression levels were down-regulated. Above all, key molecules of DHA therapy were mainly involved in the parasites' rhoptry, transporter, antigenic variation, plasmodium exportin. These results offer us many hints to guide the further studies on mechanism of artemisinin and provide a new way for development of new antimalarial drugs.
Animals
;
Antimalarials
;
Artemisinins
;
Erythrocytes
;
Plasmodium falciparum
;
Transcriptome
10.Two Cases of Lupus Miliaris Disseminatus Faciei Treated with Oral Mini-pulse Steroid Therapy.
Chan Ho NA ; Yea Son LEE ; Hoon CHOI ; Bong Seok SHIN ; Min Sung KIM
Korean Journal of Dermatology 2019;57(1):20-23
Lupus miliaris disseminatus faciei (LMDF) is a rare granulomatous skin disease mainly affecting the central area of the face. A variety of treatments are reportedly of some benefit; however, controlled studies to establish the best treatment are lacking. Here, we report the cases of a 33-year-old man who presented with multiple, various-sized, erythematous maculopapules on the face and a 19-year-old man who presented multiple, reddish papuloplaques distributed on the face. Histopathological examinations of the two cases revealed large clear-boundary epithelioid cell granulomas with central necrosis surrounded by lymphocytic infiltration. Based on the clinical and histological findings, diagnoses of LMDF were made. As oral tetracycline and antimalarials were not fully effective in our cases, oral mini-pulse steroid therapy (dexamethasone, 5 mg bid for 2 days per week) was initiated. After several months, the eruption significantly improved, and most lesions were resolved. Here, we report two cases of LMDF successfully treated with oral mini-pulse steroid therapy.
Adult
;
Antimalarials
;
Diagnosis
;
Epithelioid Cells
;
Granuloma
;
Humans
;
Necrosis
;
Skin Diseases
;
Tetracycline
;
Young Adult

Result Analysis
Print
Save
E-mail