1.Screening and obataining of aptamers for the blood group antigen-binding adhesin (BabA) to block Helicobacter pylori (H.pylori) colonization in the stomach of mice.
Yuan YUAN ; Weipeng LI ; Xiaojing ZHOU ; Weili SUN ; Xiaolei TANG
Chinese Journal of Cellular and Molecular Immunology 2023;39(9):793-800
Objective To explore the aptamer specific binding blood group antigen-binding adhesin (BabA) of Helicobacter pylori (H.pylori) for blocking of H.pylori adhering host cell. Methods H.pylori strain was cultured and its genome was extracted as templates to amplify the BabA gene by PCR with designed primers. The BabA gene obtained was cloned and constructed into prokaryotic expression plasmid, which was induced by isopropyl beta-D-galactoside (IPTG) and purified as target. The single stranded DNA (ssDNA) aptamers that specifically bind to BabA were screened by SELEX. Enzyme-linked oligonucleotide assay (ELONA) was used to detect and evaluate the characteristics of candidate aptamers. The blocking effect of ssDNA aptamers on H.pylori adhesion was subsequently verified by flow cytometry and colony counting at the cell level in vitro and in mouse model of infection, respectively. Meanwhile, the levels of cytokines, interleukin 6 (IL-6), IL-8, tumor necrosis factor α (TNF-α), IL-10 and IL-4 in the homogenate of mouse gastric mucosa cells were detected by ELISA. Results The genome of H.pylori ATCC 43504 strains was extracted and the recombinant plasmid pET32a-BabA was constructed. After induction and purification, the relative molecular mass (Mr) of the recombinant BabA protein was about 39 000. The amino acid sequence of recombinent protein was consistent with BabA protein by peptide mass fingerprint (PMF). Five candidate aptamers were selected to bind to the above recombinent BabA protein by SELEX. The aptamers A10, A30 and A42 identified the same site, while A3, A16 and the above three aptamers identified different sites respectively. The aptamer significantly blocked the adhesion of H.pylori in vitro. Animal model experiments showed that the aptamers can block the colonization of H.pylori in gastric mucosa by intragastric injection and reduce the inflammatory response. The levels of IL-4, IL-6, IL-8 and TNF-α in gastric mucosal homogenates in the model group with aptamer treatment were lower than that of model group without treatment. Conclusion Aptamers can reduce the colonization of H.pylori in gastric mucosa via binding BabA to block the adhesion between H.pylori and gastric mucosal epithelial cells.
Animals
;
Mice
;
Helicobacter pylori/genetics*
;
Interleukin-4
;
Interleukin-6
;
Interleukin-8
;
Tumor Necrosis Factor-alpha
;
Stomach
;
Oligonucleotides
;
Adhesins, Bacterial/genetics*
;
Blood Group Antigens
2.Characterization of the cellular immune response induced by Mycobacterium tuberculosis Rv2626c.
Guo LI ; Hong FU ; Yunfei GAO ; Youwei FENG ; Jing LI ; Chao CHEN ; Dan ZHONG ; Xiang CHEN ; Yuelan YIN ; Xin'an JIAO
Chinese Journal of Biotechnology 2023;39(7):2644-2655
Nearly a quarter of the world's population is infected with Mycobacterium tuberculosis and remains long-term asymptomatic infection. Rv2626c is a latent infection-related protein regulated by DosR of M. tuberculosis. In this study, the Rv2626c protein was prokaryotically expressed and purified, and its immunobiological characteristics were analyzed using RAW264.7 cells and mice as infection models. SDS-PAGE and Western blotting analysis showed that the Rv2626c-His fusion protein was mainly expressed in soluble form and specifically reacted with the rabbit anti-H37RV polyclonal serum. In addition, we found that the Rv2626c protein bound to the surface of RAW264.7 macrophages and up-regulated the production of NO. Moreover, the Rv2626c protein significantly induced the production of pro-inflammatory cytokines IFN-γ, TNF-α, IL-6 and MCP-1, and induced strong Th1-tendency immune response. These results may help to reveal the pathogenic mechanism of M. tuberculosis and facilitate the development of new tuberculosis vaccine.
Animals
;
Mice
;
Rabbits
;
Mycobacterium tuberculosis/genetics*
;
Tuberculosis
;
Antigens, Bacterial
;
Cytokines
;
Immunity, Cellular
3.Prokaryotic expression of the GapC protein of Streptococcus uberis and prediction, identification of its B-cell epitopes.
Hanqing WANG ; Xuejing ZHANG ; Huan ZHANG ; Xiaomeng CHEN ; Baojiang ZHANG ; Yan SU
Chinese Journal of Biotechnology 2022;38(1):148-159
The GapC protein of Streptococcus uberis located on the surface of bacteria is a protein with glyceraldehyde-3-phosphate dehydrogenase activity. It participates in cellular processes and exhibits a variety of biological activities. In addition, it has good antigenicity. The aim of this study was to predict the possible B-cell epitopes of the GapC protein and verify the immunogenicity of candidate epitope peptides. The gapC gene of S. uberis isolate RF5-1 was cloned into a recombinant expression plasmid pET-28a-GapC and inducibly expressed. The purified protein was used to immunize experimental rabbits to produce anti-GapC polyclonal antibodies. The three-dimensional structure and three-dimensional location of the GapC B-cell epitopes and the homology comparison of the GapC protein and its B-cell epitopes were carried out using bioinformatics softwares. The results showed that the 44-kDa GapC protein had a good immunological reactivity. Six linear and 3 conformational dominant B-cell epitopes against the GapC protein were selected and synthesized. Three dimensional analysis indicated that the selected peptides have better antigen epitope formation potential. Rabbit anti-GapC polyclonal antibodies were generated after immunized with the purified GapC protein, and the polyclonal antibodies were used to identify the epitope peptide by an indirect ELISA. The ELISA results showed that all of the 9 epitope peptides could react with anti-GapC polyclonal antibodies with varying titers. Among them, the epitope polypeptide 266AANDSYGYTEDPIVSSD282 reacted with the polyclonal antibodies significantly stronger than with other epitope peptides. This study laid an experimental foundation for in-depth understanding of the immunological properties and utilizing effective epitopes of the GapC protein of S. uberis.
Animals
;
Antigens, Bacterial/genetics*
;
Bacterial Proteins/genetics*
;
Epitopes, B-Lymphocyte/genetics*
;
Mice
;
Mice, Inbred BALB C
;
Rabbits
;
Streptococcus
4.Advances in the research of enterobacterial common antigen.
Xuegang SHEN ; Yuying YANG ; Pei LI ; Hongyan LUO ; Qingke KONG
Chinese Journal of Biotechnology 2021;37(4):1081-1091
The enterobacterial common antigen (ECA) is a polysaccharide composed of polysaccharide repeats that are located in the outer membrane of almost all Enterobacteriaceae bacteria and has diverse biological functions. ECA is synthesized by the synergistic action of multiple genes that are present in clusters on the genome of Enterobacteriaceae bacteria, forming the ECA antigen gene cluster, an important virulence factor that plays a role in host invasion and survival of Enterobacteriaceae in vivo. ECA also plays an important role in the maintenance of the bacterial outer membrane permeability barrier, flagella gene expression, swarming motility, and bile salts resistance. In addition, ECALPS, anchored in the core region of bacterial lipopolysaccharide, is an important surface antigen for bacteria, stimulating high levels of antibody production in the host and could be a target for vaccine research. This review summarizes ECA purification, genes involved in ECA biosynthesis, its immunological characteristics, biological functions and clinical applications.
Antigens, Bacterial/genetics*
;
Enterobacteriaceae/genetics*
;
Lipopolysaccharides
;
Polysaccharides
5.Screening of Serum Biomarkers for Distinguishing between Latent and Active Tuberculosis Using Proteome Microarray.
Shu Hui CAO ; Yan Qing CHEN ; Yong SUN ; Yang LIU ; Su Hua ZHENG ; Zhi Guo ZHANG ; Chuan You LI
Biomedical and Environmental Sciences 2018;31(7):515-526
OBJECTIVETo identify potential serum biomarkers for distinguishing between latent tuberculosis infection (LTBI) and active tuberculosis (TB).
METHODSA proteome microarray containing 4,262 antigens was used for screening serum biomarkers of 40 serum samples from patients with LTBI and active TB at the systems level. The interaction network and functional classification of differentially expressed antigens were analyzed using STRING 10.0 and the TB database, respectively. Enzyme-linked immunosorbent assays (ELISA) were used to validate candidate antigens further using 279 samples. The diagnostic performances of candidate antigens were evaluated by receiver operating characteristic curve (ROC) analysis. Both antigen combination and logistic regression analysis were used to improve diagnostic ability.
RESULTSMicroarray results showed that levels of 152 Mycobacterium tuberculosis (Mtb)-antigen- specific IgG were significantly higher in active TB patients than in LTBI patients (P < 0.05), and these differentially expressed antigens showed stronger associations with each other and were involved in various biological processes. Eleven candidate antigens were further validated using ELISA and showed consistent results in microarray analysis. ROC analysis showed that antigens Rv2031c, Rv1408, and Rv2421c had higher areas under the curve (AUCs) of 0.8520, 0.8152, and 0.7970, respectively. In addition, both antigen combination and logistic regression analysis improved the diagnostic ability.
CONCLUSIONSeveral antigens have the potential to serve as serum biomarkers for discrimination between LTBI and active TB.
Adolescent ; Adult ; Aged ; Antibodies, Bacterial ; Antibody Specificity ; Antigens, Bacterial ; Biomarkers ; blood ; Female ; Humans ; Latent Tuberculosis ; blood ; diagnosis ; Logistic Models ; Male ; Middle Aged ; Mycobacterium tuberculosis ; Protein Array Analysis ; methods ; Proteome ; genetics ; Proteomics ; methods ; ROC Curve ; Young Adult
6.Cloning expression and serological evaluation on Mycobacterium tuberculosis four new antigens.
Q LUO ; S J LI ; T Y XIAO ; M C LI ; H C LIU ; Y L LOU ; K L WAN
Chinese Journal of Epidemiology 2018;39(4):514-518
Objective: To evaluate the serological diagnostic value of Mycobacterium (M.) tuberculosis four new antigens Rv0432, Rv0674, Rv1566c and Rv1547. Methods:Rv0432, Rv0674, Rv1566c and Rv1547 were amplified from M. tuberculosis strain H37Rv genomic DNA by using PCR, among which Rv1547 was divided into two segments for amplification (Rv1547-1 and Rv1547-2). The segments were cloned into expression vector PET-32a while the recombinant proteins were purified by affinity chromatography. Serums were incubated with BL21 (DE3) proteins. Antibodies IgG against M. tuberculosis were tested with 151 serum samples (41 healthy people and 110 TB patients) by using ELISA. The diagnostic efficiency of antigens was analyzed by means of receiver operating characteristic curve. Difference of the objective proteins in TB patients and healthy controls was compared by t-test. Results: Recombinant antigens Rv0432, Rv0674, Rv1566c, Rv1547-1 and Rv1547-2 were successfully expressed and purified. Results from ELISA showed that the sensitivity, specificity, positive predictive value, negative predictive value, Youden index and area under the curve of Rv0432, Rv0674, Rv1566c, Rv1547-1 and Rv1547-2, as 43.64%-92.73%, 80.49%-92.68%, 0.92-0.94, 0.38-0.80, 0.363-0.732 and 0.649-0.915. All the objective proteins showed significantly higher antibody levels in TB patients, when compared to the healthy controls (P<0.000 1). Conclusion: The newly identified antigens Rv0432, Rv0674, Rv1566c, Rv1547-1 and Rv1547-2 all performed well when being used for TB serological diagnosis, thus were expected to be new candidate antigens used for TB diagnosis.
Antigens, Bacterial/genetics*
;
Cloning, Molecular
;
Enzyme-Linked Immunosorbent Assay
;
Humans
;
Immunoglobulin G
;
Mycobacterium tuberculosis/metabolism*
;
Polymerase Chain Reaction
;
ROC Curve
;
Recombinant Proteins
;
Sensitivity and Specificity
;
Serologic Tests/methods*
;
Tuberculosis/genetics*
7.Study on the super-antigen genes of group A Streptococcus pyogenes strains isolated from patients with scarlet fever and pharyngeal infection, in Beijing, 2015-2017.
C N MA ; X M PENG ; S S WU ; D T ZHANG ; J C ZHAO ; G L LU ; Y PAN ; S J CUI ; Y M LIU ; W X SHI ; M ZHANG ; Q Y WANG ; P YANG
Chinese Journal of Epidemiology 2018;39(10):1375-1380
Objective: To analyze the characteristics of super-antigen (SAg) of group A Streptococcus pyogenes (GAS), isolated from patients with scarlet fever or pharyngeal infections in Beijing between 2015-2017. Methods: Throat swab specimens from patients with scarlet fever or pharyngeal infections were collected and tested for GAS. Eleven currently known SAg genes including SpeA, speC, speG, speH, speI, speJ, speK, speL, speM, smeZ and ssa were tested by real-time PCR while M protein genes (emm genes) were amplified and sequenced by PCR. Results: A total of 377 GAS were isolated from 6 801 throat swab specimens, with the positive rate as 5.5%. There were obvious changes noticed among speC, speG, speH and speK in three years. A total of 45 SAg genes profiles were observed, according to the SAgs inclusion. There were significant differences appeared in the frequencies among two of the highest SAg genes profiles between emm1 and emm12 strains (χ(2)=38.196, P<0.001; χ(2)=72.310, P<0.001). There also appeared significant differences in the frequencies of speA, speH, speI and speJ between emm1 and emm12 strains (χ(2)=146.154, P<0.001; χ(2)=52.31, P<0.001; χ(2)=58.43, P<0.001; χ(2)=144.70, P<0.001). Conclusions: Obvious changes were noticed among SAg genes including speC, speG, speH and speK from patients with scarlet fever or pharyngeal infections in Beijing between 2015-2017. SAg genes including speA, speH, speI and speJ appeared to be associated with the emm 1 and emm 12 strains. More kinds of SAg genes profiles were isolated form GAS but with no significant differences seen in the main SAg genes profiles, during the epidemic period.
Antigens, Bacterial/genetics*
;
Bacterial Outer Membrane Proteins
;
Bacterial Proteins
;
Beijing/epidemiology*
;
China/epidemiology*
;
Exotoxins
;
Female
;
Humans
;
Membrane Proteins
;
Pharyngitis/microbiology*
;
Pharynx/microbiology*
;
Pregnancy
;
Pregnancy Complications, Infectious/microbiology*
;
Real-Time Polymerase Chain Reaction
;
Scarlet Fever/microbiology*
;
Streptococcal Infections
;
Streptococcus pyogenes/isolation & purification*
;
Superantigens/genetics*
8.Prevalence of Helicobacter pylori cagA, vacA, and iceA genotypes in children with gastroduodenal diseases.
Shuang-Hong ZHANG ; Yong XIE ; Bi-Min LI ; Dong-Sheng LIU ; Sheng-Hua WAN ; Li-Juan LUO ; Zhen-Jun XIAO ; Hong LI ; Li-Jun YI ; Jing ZHOU ; Xuan ZHU
Chinese Journal of Contemporary Pediatrics 2016;18(7):618-624
OBJECTIVETo investigate the prevalence of cagA, vacA, and iceA genotypes in the isolated strains of Helicobacter pylori (H.pylori) from children with gastroduodenal diseases in Jiangxi, China, as well as the association between cagA, vacA, and iceA genotypes and the type of gastroduodenal diseases.
METHODSThe samples of gastric antral mucosa were collected from 316 children with gastroduodenal diseases in Jiangxi, and a total of 107 strains of H.pylori were isolated. The genomic DNA of these strains was extracted, and PCR was used to determine the ureA, cagA, vacA, and iceA genotypes.
RESULTSOf all the 107 isolated strains of H.pylori, the detection rates of ureA and cagA genes were 100% (107/107) and 94.4% (101/107) respectively. The overall detection rate of vacA gene was 100% (107/107), and the detection rates of vacAs1a, vacAs1c, vacAm1, and vacAm2 genes were 74.8% (80/107), 25.2% (27/107), 29.9% (32/107), and 69.2% (74/107) respectively, with both vacAm1 and vacAm2 genes detected in 0.9% (1/107) of all H.pylori strains. In the chimera of vacA gene, the detection rates of vacAs1a/m1, vacAs1a/m2, vacAs1c/m1, and vacAs1c/m2 genes were 26.2% (28/107), 51.4% (55/107), 3.7% (4/107), and 17.8% (19/107) respectively (P<0.001). The detection rates of iceA1 and iceA2 genes were 79.4% (85/107) and 9.3% (10/107), respectively (P<0.001), and both iceA1 and iceA2 genes were detected in 7.5% (8/107) of all strains. The detection rates of the genotypes of H.pylori showed no significant differences between the peptic ulcer, chronic gastritis, and duodenal bulbar inflammation groups (P>0.05).
CONCLUSIONSThe dominant genotypes of H.pylori are cagA, vacAs1a/m2, and iceA1, and there are mixed infections with H.pylori strains of different genotypes in children with gastroduodenal disease from Jiangxi, China. The genotypes of H.pylori are not associated with the type of gastroduodenal disease.
Adolescent ; Antigens, Bacterial ; genetics ; Bacterial Outer Membrane Proteins ; genetics ; Bacterial Proteins ; genetics ; Child ; Child, Preschool ; Female ; Gastritis ; microbiology ; Genotype ; Helicobacter pylori ; classification ; genetics ; isolation & purification ; Humans ; Infant ; Male ; Peptic Ulcer ; microbiology
9.Opacity proteins of neisseria gonorrhoeae in lipooligosaccharide mutants lost ability to interact with neutrophil-restricted CEACAM3 (CD66d).
Song ZHANG ; Ya-Ting TU ; Hua-Hua CAI ; Hong-Hui DING ; Qiao LI ; Ying-Xia HE ; Xin-Xin LIU ; Xin WANG ; Feng HU ; Tie CHEN ; Hong-Xiang CHEN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):344-349
Lipooligosacharide (LOS) of Neisseria gonorrhoeae (gonococci, GC) is involved in the interaction of GC with host cells. Deletion of the alpha-oligosaccharide (alpha-OS) moiety of LOS (lgtF mutant) significantly impairs invasion of GC into epithelial cell lines. GC opacity (Opa) proteins, such as OpaI, mediate phagocytosis and stimulate chemiluminescence responses in neutrophils in part through interaction with members of the carcinoembryonic antigen (CEA) family, which includes CEACAM3 (CD66d), a human neutrophil specific receptor for phagocytosis of bacteria. In the present work, we examined the effects of OpaI-expressing lgtF mutant on phagocytosis by HeLa-CEACAM3 cells and chemiluminescence responses in neutrophils. The results showed that lgtF mutant even expressing OpaI completely lost the ability to promote either phagocytosis mediated by CEACAM3 interaction in HeLa cells or chemiluminescence responses in neutrophils. These data indicated that Opa proteins in the lgtF mutant, which might result from the conformational change, cannot be functional.
Antigens, Bacterial
;
chemistry
;
genetics
;
immunology
;
metabolism
;
Carbohydrate Sequence
;
Carcinoembryonic Antigen
;
genetics
;
immunology
;
Gene Expression Regulation
;
HeLa Cells
;
Host-Pathogen Interactions
;
Humans
;
Lipopolysaccharides
;
chemistry
;
immunology
;
Luminescent Measurements
;
Mutation
;
Neisseria gonorrhoeae
;
genetics
;
metabolism
;
pathogenicity
;
Neutrophils
;
immunology
;
microbiology
;
Phagocytosis
10.Analysis on human T cell epitopes polymorphisms of five specific antigens of Mycobacterium tuberculosis in 13 areas of China.
Shuangshuang CHEN ; Yongjuan XU ; Shiqi XIAO ; Machao LI ; Haican LIU ; Xiuqin ZHAO ; Yi JIANG ; Yimou WU ; Kanglin WAN ;
Chinese Journal of Epidemiology 2016;37(4):553-557
OBJECTIVETo investigate the polymorphisms of the coding gene and the human T cell epitopes of antigen GlnA1, Mpt70, LppX, GroES and LpqH on Mycobacterium tuberculosis complex (MTBC) strains in thirteen provinces of China.
METHODSA total of 173 clinical MTBC isolates from thirteen provinces were selected to test the gene sequences of the five antigens, using PCR and DNA sequencing methods. Sequences were compared and sliced by BioEdit, and the variations of the human and nonhuman T cell epitopes were analyzed. The rates on synonymous mutation (dS), non-synonymous mutation (dN) and dN/dS values were calculated by Mega 6.0 software.
RESULTSAmong the 173 strains, there were two non-synonymous mutations in the non-epitope region of glnA1, one non-synonymous mutations in epitope domain of mpt70, one non-synonymous mutation and one synonymous mutation in the epitope domain of lpqH; while groES showed no mutation. lppX had five non-synonymous mutations and one synonymous mutation in the epitope domain. Nine strains presented higher polymorphism at the same gene locus of position 152 in lppX. And seven of the fifteen epitopes contained in lppX were altered and the dN/dS value of this gene was 0.19.
CONCLUSIONSData from the human T cell epitope domains of MTBC antigens Mpt70, LppX and LpqH contained epitope diversity, indicated that these antigens may have involved in diversifying the selection to evade the host immunity. GlnA1 had the polymorphism in epitope domain, which might have little influence on the immuno-response. While GroES seemed relatively conservative, it could play an important role on identification, diagnosis and the development of potential Mycobacterium tuberculosis vaccine.
Antigens, Bacterial ; genetics ; Bacterial Proteins ; genetics ; China ; Epitopes, T-Lymphocyte ; genetics ; Humans ; Mycobacterium tuberculosis ; genetics ; Polymerase Chain Reaction ; Polymorphism, Genetic ; Sequence Analysis, DNA

Result Analysis
Print
Save
E-mail