1.Fundamental role of dendritic cells in inducing Th2 responses.
The Korean Journal of Internal Medicine 2018;33(3):483-489
A mysterious puzzle in immunology is how the immune system decides what types of immune response to initiate against various stimuli. Although much is known about control of T helper 1 (Th1) and Th17 responses, the mechanisms that initiate Th2 responses remain obscure. Antigen-presenting cells, particularly dendritic cells (DCs), are mandatory for the induction of a Th cell response. Numerous studies have documented the organizing role of DCs in this process. The present review summarizes the fundamental roles of DCs in inducing Th2 responses.
Allergy and Immunology
;
Antigen-Presenting Cells
;
Dendritic Cells*
;
Immune System
2.Subdominant H60 antigen-specific CD8 T-cell response precedes dominant H4 antigen-specific response during the initial phase of allogenic skin graft rejection.
Kang Il YOO ; Ji Yeong JEON ; Su Jeong RYU ; Giri NAM ; Hyewon YOUN ; Eun Young CHOI
Experimental & Molecular Medicine 2015;47(2):e140-
In allogeneic transplantation, including the B6 anti-BALB.B settings, H60 and H4 are two representative dominant minor histocompatibility antigens that induce strong CD8 T-cell responses. With different distribution patterns, H60 expression is restricted to hematopoietic cells, whereas H4 is ubiquitously expressed. H60-specific CD8 T-cell response has been known to be dominant in most cases of B6 anti-BALB.B allo-responses, except in the case of skin transplantation. To understand the mechanism underlying the subdominance of H60 during allogeneic skin transplantation, we investigated the dynamics of the H60-specific CD8 T cells in B6 mice transplanted with allogeneic BALB.B tail skin. Unexpectedly, longitudinal bioluminescence imaging and flow cytometric analyses revealed that H60-specific CD8 T cells were not always subdominant to H4-specific cells but instead showed a brief dominance before the H4 response became predominant. H60-specific CD8 T cells could expand in the draining lymph node and migrate to the BALB.B allografts, indicating their active participation in the anti-BALB.B allo-response. Enhancing the frequencies of H60-reactive CD8 T cells prior to skin transplantation reversed the immune hierarchy between H60 and H4. Additionally, H60 became predominant when antigen presentation was limited to the direct pathway. However, when antigen presentation was restricted to the indirect pathway, the expansion of H60-specific CD8 T cells was limited, whereas H4-specific CD8 T cells expanded significantly, suggesting that the temporary immunodominance and eventual subdominance of H60 could be due to their reliance on the direct antigen presentation pathway. These results enhance our understanding of the immunodominance phenomenon following allogeneic tissue transplantation.
Animals
;
Antigen Presentation
;
Antigen-Presenting Cells/immunology/metabolism
;
CD8-Positive T-Lymphocytes/*immunology
;
Epitopes, T-Lymphocyte/*immunology
;
Female
;
Graft Rejection/*immunology
;
Interferon-gamma
;
Lymphocyte Activation/immunology
;
Lymphocyte Count
;
Mice
;
Minor Histocompatibility Antigens/*immunology/metabolism
;
*Skin Transplantation
;
Transplantation, Homologous
3.Polyionic vaccine adjuvants: another look at aluminum salts and polyelectrolytes.
Bradford S POWELL ; Alexander K ANDRIANOV ; Peter C FUSCO
Clinical and Experimental Vaccine Research 2015;4(1):23-45
Adjuvants improve the adaptive immune response to a vaccine antigen by modulating innate immunity or facilitating transport and presentation. The selection of an appropriate adjuvant has become vital as new vaccines trend toward narrower composition, expanded application, and improved safety. Functionally, adjuvants act directly or indirectly on antigen presenting cells (APCs) including dendritic cells (DCs) and are perceived as having molecular patterns associated either with pathogen invasion or endogenous cell damage (known as pathogen associated molecular patterns [PAMPs] and damage associated molecular patterns [DAMPs]), thereby initiating sensing and response pathways. PAMP-type adjuvants are ligands for toll-like receptors (TLRs) and can directly affect DCs to alter the strength, potency, speed, duration, bias, breadth, and scope of adaptive immunity. DAMP-type adjuvants signal via proinflammatory pathways and promote immune cell infiltration, antigen presentation, and effector cell maturation. This class of adjuvants includes mineral salts, oil emulsions, nanoparticles, and polyelectrolytes and comprises colloids and molecular assemblies exhibiting complex, heterogeneous structures. Today innovation in adjuvant technology is driven by rapidly expanding knowledge in immunology, cross-fertilization from other areas including systems biology and materials sciences, and regulatory requirements for quality, safety, efficacy and understanding as part of the vaccine product. Standardizations will aid efforts to better define and compare the structure, function and safety of adjuvants. This article briefly surveys the genesis of adjuvant technology and then re-examines polyionic macromolecules and polyelectrolyte materials, adjuvants currently not known to employ TLR. Specific updates are provided for aluminum-based formulations and polyelectrolytes as examples of improvements to the oldest and emerging classes of vaccine adjuvants in use.
Adaptive Immunity
;
Adjuvants, Immunologic
;
Allergy and Immunology
;
Aluminum Hydroxide
;
Aluminum*
;
Antigen Presentation
;
Antigen-Presenting Cells
;
Bias (Epidemiology)
;
Chitosan
;
Colloids
;
Dendritic Cells
;
Emulsions
;
Immunity, Innate
;
Ligands
;
Nanoparticles
;
Polymers
;
Receptors, Pattern Recognition
;
Salts*
;
Systems Biology
;
Toll-Like Receptors
;
Vaccines
4.Tanshinone II A inhibits dendritic cell-mediated adaptive immunity: potential role in anti-atherosclerotic activity.
Hong-zhan LI ; Yong-heng LU ; Guang-sheng HUANG ; Qi CHEN ; Qiang FU ; Zhi-liang LI
Chinese journal of integrative medicine 2014;20(10):764-769
OBJECTIVEAntigen-presenting cells such as monocytes and dendritic cells (DCs) stimulate T-cell proliferation and activation during adaptive immunity. This cellular interaction plays a role in the growth of atherosclerotic plaques. Tanshinone II A (TSN) had been shown to decrease the growth of atherosclerotic lesions. We therefore investigated the ability of TSN to inhibit human monocyte-derived DCs and their T-cellstimulatory capacity.
METHODSDCs derived from human monocytes cultured with recombinant human interleukin (IL)-4 and recombinant human granulocyte-macrophage colony-stimulating factor were co-cultured with TSN and lipopolysaccharide for 48 h. Phosphate-buffered saline was used as a negative control. Activation markers and the capacity of DCs for endocytosis were measured by flow cytometry, and proinflammatory cytokines were measured by enzyme-linked immunosorbent assays. DCs were co-cultured with lymphocytes to measure T-cell proliferation and IL-2 secretion by mixed lymphocyte reactions.
RESULTSTSN dose-dependently attenuated DC expression of costimulatory molecules (CD86), and decreased expression of major histocompatibility complex class II (human loukocyte antigen-DR) and adhesion molecules (CD54). Moreover, TSN reduced secretion of the proinflammatory cytokines IL-12 and IL-1 by human DCs, and restored the capacity for endocytosis. Finally, TSN-preincubated DCs showed a reduced capacity to stimulate T-cell proliferation and cytokine secretion.
CONCLUSIONSTSN inhibits DC maturation and decreases the expression of proinflammatory cytokines, while impairing their capacity to stimulate T-cell proliferation and cytokine secretion. These effects may contribute to the influence of TSN on the progression of atherosclerotic lesions.
Antigen-Presenting Cells ; drug effects ; Atherosclerosis ; immunology ; pathology ; B7-2 Antigen ; metabolism ; Cell Membrane ; drug effects ; metabolism ; Cytokines ; secretion ; Dendritic Cells ; drug effects ; immunology ; secretion ; Diterpenes, Abietane ; pharmacology ; Endocytosis ; drug effects ; Flow Cytometry ; Humans ; Immunity, Cellular ; drug effects ; Inflammation Mediators ; metabolism ; Lymphocyte Activation ; drug effects
5.In vitro anti-tumor effect of human dendritic cells vaccine induced by astragalus polysacharin: an experimental study.
Xue-Ning JING ; Bo QIU ; Jin-Feng WANG ; Yong-Gang WU ; Ji-Biao WU ; Dan-Dan CHEN
Chinese Journal of Integrated Traditional and Western Medicine 2014;34(9):1103-1107
OBJECTIVETo explore the in vitro anti-tumor effect and mechanism of dendritic cell (DC) tumor vaccine induced by astragalus polysacharin (APS).
METHODSPeripheral blood mononuclear cells (PBMCs) isolated from human peripheral blood. DCs obtained from human peripheral blood were cultivated and added with culture solution for in vitro inducing them to immature DCs. On the 5th day of culture, 100 microg/mL (as the final concentration) APS was added to cells in the APS group. DCs were induced to mature in the cytokine groups by adding 20 ng/mL rhTNF-alpha (as the final concentration). Changes of morphology and phenotype of DCs were observed. Mature DCs were sensitized with tumor antigen SGC-7901 and co-cultured with allogeneic T cells. The proliferative function of T lymphocytes was detected by MTT assay. Levels of IL-12 and IFN-gamma in co-cultured supernatant were detected by ELISA. Cytotoxic lymphocytes (CTL) activated by DC were co-cultured with tumor cell SGC-7901. The specific killing capacity of CTL to target cells was detected by LDH release assay.
RESULTSThe morphological observation and phenotypic identification of APS induced DCs were in accordance with the characteristics of mature DCs. APS induced mature DCs could stimulate the proliferation of allogeneic T lymphocytes. The proliferation index of T cells increased with increased ratio of stimulator cells to effector cells (P < 0.05). Levels of IL-12 and IFN-gamma in co-culture supernatant significantly increased in a time-dependent manner (P < 0.05). CTL cells activated by sensitization of DCs could significantly kill tumor cells, and the killing effect increased along with increased effector-to-target ratio.
CONCLUSIONAPS could in vitro induce DCs to mature, promote its antigen-presenting capacity, effectively activate CTLs, and enhance anti-tumor function of the organism.
Antigen-Presenting Cells ; cytology ; drug effects ; immunology ; Cancer Vaccines ; immunology ; Cell Line ; Cell Proliferation ; drug effects ; Coculture Techniques ; Dendritic Cells ; cytology ; drug effects ; immunology ; Drugs, Chinese Herbal ; pharmacology ; Humans ; Interferon-gamma ; immunology ; Interleukin-12 ; immunology ; Leukocytes, Mononuclear ; cytology ; immunology ; Lymphocyte Activation ; T-Lymphocytes, Cytotoxic ; cytology ; drug effects
6.Induction of Donor-Specific Tolerance: Is This Achievable?.
Eun Jin CHO ; Ji In PARK ; Jung Nam AN ; Yon Su KIM
The Korean Journal of Internal Medicine 2012;27(1):114-114
No abstract available.
Animals
;
Antigen-Presenting Cells/immunology
;
Graft Rejection/immunology/*prevention & control
;
Graft Survival
;
*Histocompatibility
;
Humans
;
Immunosuppression/*methods
;
Intercellular Adhesion Molecule-1/immunology
;
Isoantigens/*immunology
;
Organ Transplantation/*adverse effects
;
*Transplantation Tolerance
7.To forge a solid immune recognition.
Protein & Cell 2012;3(8):564-570
Phagocytosis and innate immune responses to solid structures are topics of interest and debate. Alum, monosodium urate, calcium pyrophosphate dehydrate, silica and by extension all solid entities draw varying degrees of attention from phagocytes, such as antigen presenting cells. For some, innocuous soluble metabolites turn into fierce irritants upon crystallization, pointing to divergent signaling mechanisms of a given substance in its soluble and solid states. Over the years, many mechanisms have been proposed, including phagocytic receptors, toll like receptors, and NACHT-LRRs (NLRs), as well as several other protein structure mediated recognition of the solids. Is there a more general mechanism for sensing solids? In this perspective, I present an alternative view on the topic that membrane lipids can engage solid surfaces, and the binding intensity leads to cellular activation. I argue from the stands of evolution and biological necessity, as well as the progression of our understanding of cellular membranes and phagocytosis. The effort is to invite debate of the topic from a less familiar yet equally thrilling viewing angle.
Adjuvants, Immunologic
;
Alum Compounds
;
Animals
;
Antigen-Presenting Cells
;
cytology
;
immunology
;
Biological Evolution
;
Calcium Pyrophosphate
;
immunology
;
Cell Membrane
;
immunology
;
Humans
;
Immunity, Innate
;
Membrane Lipids
;
immunology
;
Phagocytes
;
cytology
;
immunology
;
Phagocytosis
;
immunology
;
Phase Transition
;
Receptors, Pattern Recognition
;
immunology
;
Signal Transduction
;
immunology
;
Silicon Dioxide
;
immunology
;
Uric Acid
;
immunology
8.Recent progress of elucidating the mechanisms of drug hypersensitivity
Asia Pacific Allergy 2012;2(3):203-209
Recent technical approaches to investigating drug hypersensitivity have provided a great deal of information to solve the mechanisms that remain poorly understood. First, immunological investigations and in silico analysis have revealed that a novel interaction between T cells and antigen-presenting cells, namely the pharmacological interaction concept, is involved in drug recognition and the hapten theory. Second, progress in immunology has provided a new concept of CD4+ T cell subsets. Th17 cells have proven to be a critical player in acute generalized exanthematous pustulosis. Our recent findings suggest that this subset might contribute to the pathogenesis of Stevens-Johnson syndrome/toxic epidermal necrolysis. Third, alarmins, molecules associated with innate immunity, are also associated with exaggeration and the persistence of severe drug hypersensitivity. The latest innovative techniques are providing a new landscape to examine drug hypersensitivity.
Acute Generalized Exanthematous Pustulosis
;
Alarmins
;
Allergy and Immunology
;
Antigen-Presenting Cells
;
Computer Simulation
;
Drug Hypersensitivity
;
Hypersensitivity
;
Immunity, Innate
;
Receptors, Antigen, T-Cell
;
T-Lymphocyte Subsets
;
T-Lymphocytes
;
Th17 Cells
9.Overview of Gp96 mediated immunity.
Caiwei CHEN ; Xiaojuan JIA ; Songdong MENG ; Wenjun LIU
Chinese Journal of Biotechnology 2011;27(5):704-711
As a member of the HSP90 family, heat shock protein (HSP) Gp96 is one of the most abundant proteins in the endoplasmic reticulum (ER), which displayed important molecular chaperones function in cells. Gp96 can stimulate the production of cytokines by activating the antigen presentation cells (such as dendritic cell, et al) in innate immunity. It is capable of eliciting an antigen-specific cytotoxic T lymphocyte (CTL) immune response to eliminate pathogens and tumors by facilitating antigen cross-presentation in adaptive immunity. Gp96 is also an ideal adjuvant in many recent researches. Here, we review the progress that addresses the role of biological characteristics, immunogenic mechanism that may be involved in the induction of anti-infection immune response and antitumor immunity, which may guide the new vaccine strategies with the knowledge of Gp96-antigen complexes.
Adjuvants, Immunologic
;
genetics
;
metabolism
;
Antigen-Presenting Cells
;
physiology
;
Communicable Diseases
;
immunology
;
Dendritic Cells
;
immunology
;
Endoplasmic Reticulum
;
immunology
;
Humans
;
Membrane Glycoproteins
;
immunology
;
Neoplasms
;
immunology
;
T-Lymphocytes, Cytotoxic
;
immunology
10.Regulatory T cells inhibit proliferation of mouse lymphoma cell line EL4 in vitro.
Chen ZHANG ; Yan KONG ; Jun GUO ; Zhi-Tao YING ; Zhi-Hong YUAN ; Yun-Tao ZHANG ; Wen ZHENG ; Yu-Qin SONG ; Ping-Ping LI ; Jun ZHU
Journal of Experimental Hematology 2010;18(5):1198-1203
This study was aimed to investigate the effect of regulatory T (Treg) cells on the T cell lymphoma EL4 cells and its mechanism in vitro. C57BL/6 mouse Treg cells were isolated by magnetic cell sorting (MACS). The purity of Treg cells and their expression of Foxp3 were identified by flow cytometry (FCM) and PT-PCR respectively. The suppression of Treg cells on EL4 cells was detected by 3H-TdR method. At the same time, enzyme-linked immunosorbent assay (ELISA) was used to detect the secretion of cytokine TGF-β1 and IL-10. The results showed that CD4+CD25+ T cells could be successfully isolated by MACS with the purity reaching 94.52% and the expression of Foxp3 reaching 84.72%. After sorting, the expression of Foxp3 mRNA could be detected by RT-PCR. 3H-TdR assay confirmed that regulatory T cells could suppress the proliferation of EL4 cells with or without antigen presenting cells (APC) or dendritic cells (DC), APC or DC might effectively enhance the suppression. In addition, DC alone also suppressed the proliferation. TGF-β1 and IL-10 could be detected in the supernatant by ELISA. It is concluded that the Treg cells can obviously suppress the proliferation of T cell lymphoma cells in vitro, APC or DC can enhance this suppressive effect, while the DC alone also can suppress the proliferation of EL4 cells, the TGF-β1 and IL-10 cytokine pathway may be one of the mechanisms of suppression.
Animals
;
Antigen-Presenting Cells
;
immunology
;
Cell Line, Tumor
;
Cell Proliferation
;
Dendritic Cells
;
immunology
;
Female
;
Forkhead Transcription Factors
;
metabolism
;
Interleukin-10
;
secretion
;
Interleukin-2 Receptor alpha Subunit
;
immunology
;
Lymphoma, T-Cell
;
immunology
;
pathology
;
Mice
;
Mice, Inbred C57BL
;
T-Lymphocytes, Regulatory
;
immunology
;
Transforming Growth Factor beta1
;
secretion

Result Analysis
Print
Save
E-mail