1.Antifungal susceptibility of clinically isolated invasive Candida tropicalis in East China from 2017 to 2021.
Fei Fei WAN ; Min ZHANG ; Jian GUO ; Wen Juan WU
Chinese Journal of Preventive Medicine 2023;57(10):1542-1549
Objective: To explore the epidemiological characteristics of sample distribution and antifungal susceptibilities of clinically invasive C. tropicalis isolates from 2017 to 2021 in East China. Methods: Using a retrospective analysis, the East China Invasive Fungal Infection Group (ECIFIG) collected C. tropicalis clinically isolated from 32 hospitals in East China between January 2017 and December 2021. The identification results of the strains were reviewed using mass spectrometry by the central laboratory of the Shanghai East Hospital. The minimum inhibitory concentrations (MICs) of the strains against fluconazole (FLU), voriconazole (VOR), itraconazole (ITR), Posaconazole (POS), isavuconazole (ISA), anidulafungin (ANI), caspofungin (CAS), micafungin (MICA) and 5-fluorocytosine (FCT) were tested by the ThermoFisher CMC1JHY colorimetric microdilution method. The MIC of amphotericin B (AMB) was tested by the broth microdilution method. The MIC results were analyzed based on the clinical breakpoints and epidemiological cutoff values (ECV) published by the Clinical and Laboratory Standards Institute (CLSI) M27 Ed3 and M57 Ed4 documents. Data analysis was conducted using the Kruskal-Wallis test and paired t-test. Results: In total, 305 C. tropicalis isolates were collected. There were 38.0% (116/305) strains isolated from blood, 11.5% (35/305) ascites, 8.9% (27/305) catheter and 8.9% (27/305) drainage fluid. The resistance rate of C. tropicalis to FLU was 32.5%, to VOR was 28.5%, and the cross-resistance rate to FLU and VOR was 28.5%. The wild-type proportions for ITR and POS were 79.3% and 29.2% respectively. There was no significant difference in resistance rates, MIC50, and MIC90 of FLU and VOR, or in the wild-type rates of ITR and POS over five years. More than 95.0% of the isolates were susceptible to echinocandins. However, one strain was identified as being multi-drug resistant. In azole antifungals, voriconazole, itraconazole, posaconazole, and isavuconazole have similar GM MIC values. The GM MIC of fluconazole is significantly higher than that of itraconazole (t=9.95, P<0.05), posaconazole (t=9.99, P<0.05), and voriconazole (t=10.01, P<0.05), Meanwhile, among echinocandins, the GM MIC of ANI was comparable to that of CAS (t=1.17, P>0.05), both of which were significantly higher than MICA (t=11.56, P<0.05; t=4.15, P<0.05). Conclusion: The clinical isolates of C. tropicalis in East China from 2017 to 2021 were relatively susceptible to echinocandins. However, there was consistently high resistance to fluconazole and voriconazole. More intensive efforts should be made on the monitoring of drug resistance in C. tropicalis.
Humans
;
Antifungal Agents/pharmacology*
;
Fluconazole/pharmacology*
;
Candida tropicalis
;
Voriconazole/pharmacology*
;
Itraconazole/pharmacology*
;
Retrospective Studies
;
Candida
;
China/epidemiology*
;
Echinocandins/pharmacology*
;
Microbial Sensitivity Tests
2.Artemisinins inhibit oral candidiasis caused by Candida albicans through the repression on its hyphal development.
Xiaoyue LIANG ; Ding CHEN ; Jiannan WANG ; Binyou LIAO ; Jiawei SHEN ; Xingchen YE ; Zheng WANG ; Chengguang ZHU ; Lichen GOU ; Xinxuan ZHOU ; Lei CHENG ; Biao REN ; Xuedong ZHOU
International Journal of Oral Science 2023;15(1):40-40
Candida albicans is the most abundant fungal species in oral cavity. As a smart opportunistic pathogen, it increases the virulence by switching its forms from yeasts to hyphae and becomes the major pathogenic agent for oral candidiasis. However, the overuse of current clinical antifungals and lack of new types of drugs highlight the challenges in the antifungal treatments because of the drug resistance and side effects. Anti-virulence strategy is proved as a practical way to develop new types of anti-infective drugs. Here, seven artemisinins, including artemisinin, dihydroartemisinin, artemisinic acid, dihydroartemisinic acid, artesunate, artemether and arteether, were employed to target at the hyphal development, the most important virulence factor of C. albicans. Artemisinins failed to affect the growth, but significantly inhibited the hyphal development of C. albicans, including the clinical azole resistant isolates, and reduced their damage to oral epithelial cells, while arteether showed the strongest activities. The transcriptome suggested that arteether could affect the energy metabolism of C. albicans. Seven artemisinins were then proved to significantly inhibit the productions of ATP and cAMP, while reduced the hyphal inhibition on RAS1 overexpression strain indicating that artemisinins regulated the Ras1-cAMP-Efg1 pathway to inhibit the hyphal development. Importantly, arteether significantly inhibited the fungal burden and infections with no systemic toxicity in the murine oropharyngeal candidiasis models in vivo caused by both fluconazole sensitive and resistant strains. Our results for the first time indicated that artemisinins can be potential antifungal compounds against C. albicans infections by targeting at its hyphal development.
Animals
;
Mice
;
Candida albicans
;
Candidiasis, Oral/drug therapy*
;
Antifungal Agents/pharmacology*
;
Hyphae
;
Artemisinins/pharmacology*
3.Expression of BmSPI38 tandem multimers in Escherichia coli and its antifungal activity.
Youshan LI ; Yuan WANG ; Rui ZHU ; Xi YANG ; Meng WEI ; Zhaofeng ZHANG ; Changqing CHEN
Chinese Journal of Biotechnology 2023;39(10):4275-4294
The aim of this study was to prepare tandem multimeric proteins of BmSPI38, a silkworm protease inhibitor, with better structural homogeneity, higher activity and stronger antifungal ability by protein engineering. The tandem multimeric proteins of BmSPI38 were prepared by prokaryotic expression technology. The effects of tandem multimerization on the structural homogeneity, inhibitory activity and antifungal ability of BmSPI38 were explored by in-gel activity staining of protease inhibitor, protease inhibition assays and fungal growth inhibition experiments. Activity staining showed that the tandem expression based on the peptide flexible linker greatly improved the structural homogeneity of BmSPI38 protein. Protease inhibition experiments showed that the tandem trimerization and tetramerization based on the linker improved the inhibitory ability of BmSPI38 to microbial proteases. Conidial germination assays showed that His6-SPI38L-tetramer had stronger inhibition on conidial germination of Beauveria bassiana than that of His6-SPI38-monomer. Fungal growth inhibition assay showed that the inhibitory ability of BmSPI38 against Saccharomyces cerevisiae and Candida albicans could be enhanced by tandem multimerization. The present study successfully achieved the heterologous active expression of the silkworm protease inhibitor BmSPI38 in Escherichia coli, and confirmed that the structural homogeneity and antifungal ability of BmSPI38 could be enhanced by tandem multimerization. This study provides important theoretical basis and new strategies for cultivating antifungal transgenic silkworm. Moreover, it may promote the exogenous production of BmSPI38 and its application in the medical field.
Animals
;
Antifungal Agents/pharmacology*
;
Escherichia coli/metabolism*
;
Proteins/metabolism*
;
Protease Inhibitors/chemistry*
;
Bombyx/chemistry*
;
Saccharomyces cerevisiae/metabolism*
;
Peptide Hydrolases
4.Identification of the target site of antimicrobial peptide AMP-17 against Candida albicans.
Longbing YANG ; Zhuqing TIAN ; Luoxiong ZHOU ; Chaoqin SUN ; Mingjiao HUANG ; Chunren TIAN ; Jian PENG ; Guo GUO
Chinese Journal of Biotechnology 2023;39(1):304-317
Candida albicans is one of the major causes of invasive fungal infections and a serious opportunistic pathogen in immunocompromised individuals. The antimicrobial peptide AMP-17 has prominent anti-Candida activity, and proteomic analysis revealed significant differences in the expression of cell wall (XOG1) and oxidative stress (SRR1) genes upon the action of AMP-17 on C. albicans, suggesting that AMP-17 may exert anti-C. albicans effects by affecting the expression of XOG1 and SRR1 genes. To further investigate whether XOG1 and SRR1 genes were the targets of AMP-17, C. albicans xog1Δ/Δ and srr1Δ/Δ mutants were constructed using the clustered regulatory interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) system. Phenotypic observations revealed that deletion of two genes had no significant effect on C. albicans growth and biofilm formation, whereas XOG1 gene deletion affected in vitro stress response and mycelium formation of C. albicans. Drug sensitivity assay showed that the MIC80 values of AMP-17 against xog1Δ/Δ and srr1Δ/Δ mutants increased from 8 μg/mL (for the wild type C. albicans SC5314) to 16 μg/mL, while the MIC80 values against srr1Δ/Δ: : srr1 revertants decreased to the level of the wild type SC5314. In addition, the ability of AMP-17 to inhibit biofilm formation of both deletion strains was significantly reduced compared to that of wild type SC5314, indicating that the susceptibility of the deletion mutants to AMP-17 was reduced in both the yeast state and during biofilm formation. These results suggest that XOG1 and SRR1 genes are likely two of the potential targets for AMP-17 to exert anti-C. albicans effects, which may facilitate further exploration of the antibacterial mechanism of novel peptide antifungal drugs.
Humans
;
Candida albicans
;
Antimicrobial Peptides
;
Proteomics
;
Peptides/pharmacology*
;
Transcription Factors/metabolism*
;
Antifungal Agents/pharmacology*
5.Antifungal susceptibility of clinically isolated invasive Candida tropicalis in East China from 2017 to 2021.
Fei Fei WAN ; Min ZHANG ; Jian GUO ; Wen Juan WU
Chinese Journal of Preventive Medicine 2023;57(10):1542-1549
Objective: To explore the epidemiological characteristics of sample distribution and antifungal susceptibilities of clinically invasive C. tropicalis isolates from 2017 to 2021 in East China. Methods: Using a retrospective analysis, the East China Invasive Fungal Infection Group (ECIFIG) collected C. tropicalis clinically isolated from 32 hospitals in East China between January 2017 and December 2021. The identification results of the strains were reviewed using mass spectrometry by the central laboratory of the Shanghai East Hospital. The minimum inhibitory concentrations (MICs) of the strains against fluconazole (FLU), voriconazole (VOR), itraconazole (ITR), Posaconazole (POS), isavuconazole (ISA), anidulafungin (ANI), caspofungin (CAS), micafungin (MICA) and 5-fluorocytosine (FCT) were tested by the ThermoFisher CMC1JHY colorimetric microdilution method. The MIC of amphotericin B (AMB) was tested by the broth microdilution method. The MIC results were analyzed based on the clinical breakpoints and epidemiological cutoff values (ECV) published by the Clinical and Laboratory Standards Institute (CLSI) M27 Ed3 and M57 Ed4 documents. Data analysis was conducted using the Kruskal-Wallis test and paired t-test. Results: In total, 305 C. tropicalis isolates were collected. There were 38.0% (116/305) strains isolated from blood, 11.5% (35/305) ascites, 8.9% (27/305) catheter and 8.9% (27/305) drainage fluid. The resistance rate of C. tropicalis to FLU was 32.5%, to VOR was 28.5%, and the cross-resistance rate to FLU and VOR was 28.5%. The wild-type proportions for ITR and POS were 79.3% and 29.2% respectively. There was no significant difference in resistance rates, MIC50, and MIC90 of FLU and VOR, or in the wild-type rates of ITR and POS over five years. More than 95.0% of the isolates were susceptible to echinocandins. However, one strain was identified as being multi-drug resistant. In azole antifungals, voriconazole, itraconazole, posaconazole, and isavuconazole have similar GM MIC values. The GM MIC of fluconazole is significantly higher than that of itraconazole (t=9.95, P<0.05), posaconazole (t=9.99, P<0.05), and voriconazole (t=10.01, P<0.05), Meanwhile, among echinocandins, the GM MIC of ANI was comparable to that of CAS (t=1.17, P>0.05), both of which were significantly higher than MICA (t=11.56, P<0.05; t=4.15, P<0.05). Conclusion: The clinical isolates of C. tropicalis in East China from 2017 to 2021 were relatively susceptible to echinocandins. However, there was consistently high resistance to fluconazole and voriconazole. More intensive efforts should be made on the monitoring of drug resistance in C. tropicalis.
Humans
;
Antifungal Agents/pharmacology*
;
Fluconazole/pharmacology*
;
Candida tropicalis
;
Voriconazole/pharmacology*
;
Itraconazole/pharmacology*
;
Retrospective Studies
;
Candida
;
China/epidemiology*
;
Echinocandins/pharmacology*
;
Microbial Sensitivity Tests
6.Four new diphenyl ether derivatives from a mangrove endophytic fungus Epicoccum sorghinum.
Jun-Jie ZHU ; Qi-Sen HUANG ; Sheng-Quan LIU ; Wei-Jia DING ; Ya-Hong XIONG ; Chun-Yuan LI
Chinese Journal of Natural Medicines (English Ed.) 2022;20(7):537-540
Four new diphenyl ethers, named epicoccethers K-N (1-4), were purified from the fermentation medium of a fungus Epicoccum sorghinum derived from Myoporum bontioides, and identified through HR-ESI-MS and NMR spectral analysis. Except that compound 1 showed moderate antifungal activity against Penicillium italicum and Fusarium graminearum, the other three compounds showed stronger activity against them than triadimefon. All of them showed moderate or weak antibacterial activity towards Staphylococcus aureus and Escherichia coli with O6 and O78 serotypes except that 3 was inactive to E. coli O6.
Anti-Bacterial Agents/pharmacology*
;
Antifungal Agents/chemistry*
;
Ascomycota
;
Escherichia coli
;
Microbial Sensitivity Tests
;
Molecular Structure
;
Phenyl Ethers/chemistry*
7.Recent progress on anti-Candida natural products.
Fu-Juan SUN ; Min LI ; Liang GU ; Ming-Ling WANG ; Ming-Hua YANG
Chinese Journal of Natural Medicines (English Ed.) 2021;19(8):561-579
Candida is an intractable life-threatening pathogen. Candida infection is extremely difficult to eradicate, and thus is the major cause of morbidity and mortality in immunocompromised individuals. Morevover, the rapid spread of drug-resistant fungi has led to significant decreases in the therapeutic effects of clinical drugs. New anti-Candida agents are urgently needed to solve the complicated medical problem. Natural products with intricate structures have attracted great attention of researchers who make every endeavor to discover leading compounds for antifungal agents. Their novel mechanisms and diverse modes of action expand the variety of fungistatic agents and reduce the emergence of drug resistance. In recent decades, considerable effort has been devoted to finding unique antifungal agents from nature and revealing their unusual mechanisms, which results in important progress on the development of new antifungals, such as the novel cell wall inhibitors YW3548 and SCY-078 which are being tested in clinical trials. This review will present a brief summary on the landscape of anti-Candida natural products within the last decade. We will also discuss in-depth the research progress on diverse natural fungistatic agents along with their novel mechanisms.
Antifungal Agents/pharmacology*
;
Biological Products/pharmacology*
;
Candida/drug effects*
;
Candidiasis/drug therapy*
;
Humans
;
Microbial Sensitivity Tests
8.Advances in the biosynthesis of natamycin and its regulatory mechanisms.
Dahong WANG ; Wenhao SHEN ; Jiangfeng YUAN ; Jianrui SUN ; Mengyang WANG
Chinese Journal of Biotechnology 2021;37(4):1107-1119
Natamycin is a polyene macrolide antibiotics with strong and broad spectrum antifungal activity. It not only effectively inhibits the growth and reproduction of fungi, but also prevents the formation of some mycotoxins. Consequently, it has been approved for use as an antifungal food preservative in most countries, and is also widely used in agriculture and healthcare. Streptomyces natalensis and Streptomyces chatanoogensis are the main producers of natamycin. This review summarizes the biosynthesis and regulatory mechanism of natamycin, as well as the strategies for improving natamycin production. Moreover, the future perspectives on natamycin research are discussed.
Antifungal Agents/pharmacology*
;
Fungi
;
Natamycin
;
Streptomyces
9.Effect of berberine hydrochloride on cell wall integrity of Candida albicans hypha.
Yu YANG ; Ya-Dong WANG ; Yan WANG ; Zhi-Qing XU ; Da-Qiang WU ; Tian-Ming WANG ; Jing SHAO ; Chang-Zhong WANG
China Journal of Chinese Materia Medica 2021;46(1):155-161
The aim of this paper was to investigate the effect of berberine hydrochloride on the cell wall integrity of Candida albicans hypha. The minimal inhibitory concentration(MIC) of berberine hydrochloride against clinical and standard C. albicans strains was detected by micro liquid-based dilution method; the effect of berberine hydrochloride on the colony formation of C. albicans SC5314 was investigated by spot assay; the effect of berberine hydrochloride on the metabolism of C. albicans SC5314 hypha was checked by XTT reduction assay, and the viability of C. albicans SC5314 hypha was tested by fluorescent staining assay. The effect of berberine hydrochloride on the morphology of C. albicans SC5314 hypha was examined by scanning electron microscope. The changes in the cell wall of C. albicans SC5314 hypha after berberine hydrochloride treatment were detected by transmission electron microscopy. The effect of berberine hydrochloride on β-glucan from C. albicans SC5314 was detected by flow cytometry. The effect of berberine hydrochloride on hypha-specific gene ECE1 and β-glucan synthase genes FKS1 and FKS2 in C. albicans was examined by qRT-PCR. The results showed that berberine hydrochloride showed a strong inhibitory effect on both clinical and standard strains of C. albicans, and the MIC was 64-128 μg·mL~(-1). Spot assay, XTT redunction assay and fluorescent staining assay showed that with the increase of berberine hydrochloride concentration, the viability of C. albicans SC5314 gradually decreased. The transmission electron microscopy scanning assay showed that this compound could cause cell wall damage of C. albicans. The flow cytometry analysis showed the exposure degree of C. albicans β-glucan. The qRT-PCR further showed that berberine hydrochloride could significantly down-regulate hypha-specific gene ECE1 and β-glucan synthase-related gene FKS1 and FKS2. In conclusion, this compound can down-regulate C. albicans and β-glucan synthase-related gene expressions, so as to destroy the cell wall structure of C. albicans, expose β-glucan and damage the integrity of the wall.
Antifungal Agents/pharmacology*
;
Berberine/pharmacology*
;
Candida albicans/genetics*
;
Cell Wall
;
Hyphae
;
Microbial Sensitivity Tests
10.Chemical constituents of Psidium guajava and their antitumor and antifungal activities.
Xiao-Cong LIU ; Dong-Mei LIN ; Min LIU ; Min ZHANG ; Qiang LI ; Jian WANG ; Lu-Lin XU ; Yuan GAO ; Jian YANG
China Journal of Chinese Materia Medica 2021;46(15):3877-3885
Twenty-six compounds, including sixteen meroterpenoids(1-16), a triterpenoid(17), four terpenoid derivatives(18-21), and five aromatic compounds(22-26), were isolated from the leaves of Psidium guajava. Their structures were identified by spectroscopic analyses including NMR and MS. Compounds 21-26 were obtained from plants of Psidium for the first time. Based on the structure,(R)-2-ethylhexyl 2H-1,2,3-triazole-4-carboxylate(24 a), an α-glucosidase inhibitor recently isolated from Paramignya trimera, should be revised as compound 24. Meroterpenoids 1-16 were evaluated for their antitumor and antifungal activities. Meroterpenoids psiguajadial D(4), guapsidial A(5), 4,5-diepipsidial A(7), guadial A(14), and guadial B(15) showed cytotoxicities against five human tumor cell lines(HL-60, A-549, SMMC-7721, MCF-7, and SW-480), among which 5 was the most effective with an IC_(50) of 3.21-9.94 μmol·L~(-1).
Antifungal Agents/pharmacology*
;
Humans
;
Magnetic Resonance Spectroscopy
;
Plant Extracts
;
Plant Leaves
;
Psidium
;
Terpenes

Result Analysis
Print
Save
E-mail