2.A Comprehensive Overview of the Role of Visual Cortex Malfunction in Depressive Disorders: Opportunities and Challenges.
Fangfang WU ; Qingbo LU ; Yan KONG ; Zhijun ZHANG
Neuroscience Bulletin 2023;39(9):1426-1438
Major depressive disorder (MDD) is a highly heterogeneous mental disorder, and its complex etiology and unclear mechanism are great obstacles to the diagnosis and treatment of the disease. Studies have shown that abnormal functions of the visual cortex have been reported in MDD patients, and the actions of several antidepressants coincide with improvements in the structure and synaptic functions of the visual cortex. In this review, we critically evaluate current evidence showing the involvement of the malfunctioning visual cortex in the pathophysiology and therapeutic process of depression. In addition, we discuss the molecular mechanisms of visual cortex dysfunction that may underlie the pathogenesis of MDD. Although the precise roles of visual cortex abnormalities in MDD remain uncertain, this undervalued brain region may become a novel area for the treatment of depressed patients.
Humans
;
Depressive Disorder, Major/pathology*
;
Brain/pathology*
;
Antidepressive Agents/therapeutic use*
;
Visual Cortex/pathology*
3.Research progress on the correlation between transforming growth factor- β level and symptoms of depression.
Yanran LI ; Huiying WANG ; Jiansong ZHOU ; Changhong WANG
Journal of Zhejiang University. Medical sciences 2023;52(5):646-652
Transforming growth factor (TGF)-β is a group of cytokines with anti-inflammatory effects in the TGF family, which participates in the development of stress and depression-related mechanisms, and plays roles in the regulation of inflammatory response in depression and the recovery of various cytokine imbalances. The core symptoms of depression is associated with TGF-β level, and the psychological symptoms of depression are related to TGF-β gene polymorphism. Various antidepressants may up-regulate TGF-β level through the complex interaction between neurotransmitters and inflammatory factors, inhibiting inflammatory response and regulating cytokine imbalance to improve depressive symptoms. Studies have shown that recombinant TGF-β1 protein has beneficial effects in mouse depression models, indicating TGF-β1 might be a potential therapeutic target for depression and nasal sprays having the advantage of being fast acting delivery method. This article reviews the research progress on dynamic changes of TGF-β level before and after depression treatment and the application of TGF-β level as an indicator for the improvement of depressive symptoms. We provide ideas for the development of new antidepressants and for the evaluation of the treatment efficacy in depression.
Animals
;
Mice
;
Transforming Growth Factor beta/metabolism*
;
Transforming Growth Factor beta1
;
Depression
;
Cytokines
;
Antidepressive Agents/therapeutic use*
;
Transforming Growth Factors
4.Meranzin Hydrate Improves Depression-Like Behaviors and Hypomotility via Ghrelin and Neurocircuitry.
Ya-Lin LIU ; Jian-Jun XU ; Lin-Ran HAN ; Xiang-Fei LIU ; Mu-Hai LIN ; Yun WANG ; Zhe XIAO ; Yun-Ke HUANG ; Ping REN ; Xi HUANG
Chinese journal of integrative medicine 2023;29(6):490-499
OBJECTIVE:
To investigate whether meranzin hydrate (MH) can alleviate depression-like behavior and hypomotility similar to Chaihu Shugan Powder (CSP), and further explore the potential common mechanisms.
METHODS:
Totally 120 Spraque-Dawley rats were randomly divided into 5-8 groups including sham, vehicle, fluoxetine (20 mg/kg), mosapride (10 mg/kg), CSP (30 g/kg), MH (9.18 mg/kg), [D-Lys3]-GHRP-6 (Dlys, 0.5 mg/kg), and MH+Dlys groups by a random number table, 8 rats in each group. And 32 mice were randomly divided into wild-type, MH (18 mg/kg), growth hormone secretagogue receptor-knockout (GHSR-KO), and GHSR+MH groups, 8 mice in each group. The forced swimming test (FST), open field test (OFT), tail suspension test (TST), gastric emptying (GE) test, and intestinal transit (IT) test were used to assess antidepressant and prokinetic (AP) effects after drug single administration for 30 min with absorbable identification in rats and mice, respectively. The protein expression levels of brain-derived neurotrophic factor (BDNF) and phosphorylated mammalian target of rapamycin (p-mTOR) in the hippocampus of rats were evaluated by Western blot. The differences in functional brain changes were determined via 7.0 T functional magnetic resonance imaging-blood oxygen level-dependent (fMRI-BOLD).
RESULTS:
MH treatment improved depression-like behavior (FST, OFT) and hypomotility (GE, IT) in the acute forced swimming (FS) rats (all P<0.05), and the effects are similar to the parent formula CSP. The ghrelin antagonist [D-Lys3]-GHRP-6 inhibited the effect of MH on FST and GE (P<0.05). Similarly, MH treatment also alleviated depression-like behavior (FST, TST) in the wild-type mice, however, no effects were found in the GHSR KO mice. Additionally, administration of MH significantly stimulated BDNF and p-mTOR protein expressions in the hippocampus (both P<0.01), which were also prevented by [D-Lys3]-GHRP-6 (P<0.01). Besides, 3 main BOLD foci following acute FS rats implicated activity in hippocampus-thalamus-basal ganglia (HTB) circuits. The [D-Lys3]-GHRP-6 synchronously inhibited BOLD HTB foci. As expected, prokinetic mosapride only had effects on the thalamus and basal ganglia, but not on the hippocampus. Within the HTB, the hippocampus is implicated in depression and FD.
CONCLUSIONS
MH accounts for part of AP effects of parent formula CSP in acute FS rats, mainly via ghrelin-related shared regulation coupled to BOLD signals in brain areas. This novel functionally connection of HTB following acute stress, treatment, and regulation highlights anti-depression unified theory.
Rats
;
Mice
;
Animals
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Ghrelin/metabolism*
;
Antidepressive Agents/therapeutic use*
;
Hippocampus
;
Stress, Psychological
;
Mammals/metabolism*
5.A Network Pharmacology-Based Study on Antidepressant Effect of Salicornia europaea L. Extract with Experimental Support in Chronic Unpredictable Mild Stress Model Mice.
Dan-Chen SUN ; Ran-Ran WANG ; Hao XU ; Xue-Hui ZHU ; Yan SUN ; Shi-Qing QIAO ; Wei QIAO
Chinese journal of integrative medicine 2022;28(4):339-348
OBJECTIVE:
To investigate the pharmacodynamic material basis, mechanism of actions and targeted diseases of Salicornia europaea L. (SE) based on the network pharmacology method, and to verify the antidepressant-like effect of the SE extract by pharmacological experiments.
METHODS:
Retrieval tools including Chinese medicine (CM), PubMed, PharmMapper, MAS 3.0 and Cytoscape were used to search the components of SE, predict its targets and related therapeutic diseases, and construct the "Component-Target-Pathway" network of SE for central nervous system (CNS) diseases. Further, protein-protein interaction (PPI) network, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) function annotation of depression-related targets were analyzed to predict the antidepressant mechanism of SE. Chronic unpredictable mild stress (CUMS) model was used to construct a mouse model with depression-like symptoms. And the animals were randomly divided into 6 groups (n=10) including the normal group (nonstressed mice administered with distilled water), the CUMS group (CUMS mice administered with distilled water), the venlafaxine group (CUMS mice administered with venlafaxine 9.38 mg/kg), SE high-, medium-, and low-dose groups (CUMS mice administered with SE 1.8, 1.35 and 0.9 g/kg, respectively). Then some relevant indicators were determined for experimental verification by the forced swim test (FST), the tail suspension test (TST) and open-field test (OFT). Dopamine (DA) concentration in hippocampus and cerebral cortex, IL-2 and corticosterone (CORT) levels in blood, and nuclear factor E2 related factor 2 (Nrf2), kelch-like epichlorohydrin related protein 1 (Keap1), NAD(P) H dehydrogenase [quinone] 1 (NQO1) and heme oxygenase-1 (HO-1) levels in mice were measured by enzyme linked immunosorbent assay (ELISA) and Western blot respectively to explore the possible mechanisms.
RESULTS:
The "target-disease" network diagram predicted by network pharmacology, showed that the potential target of SE involves a variety of CNS diseases, among which depression accounts for the majority. The experimental results showed that SE (1.8, 1.35 g/kg) significantly decreased the immobility period, compared with the CUMS group in FST and TST in mice after 3-week treatment, while SE exhibited no significant effect on exploratory behavior in OFT in mice. Compared with CUMS group, the SE group (0.9 g/kg) showed significant differences (P<0.05) in DA levels in the hippocampus and cerebral cortex. In addition, compared with CUMS control group, SE (1.8 g/kg) group showed a significant effect on decreasing the activities of CORT (P<0.05), and serum IL-2 level with no statistical significance. Finally, Western blot results showed that compared with the model group, Nrf2, Keap1, NQO1 and HO-1 protein expressions in SE group (1.8 g/kg) were up-regulated (all P<0.01).
CONCLUSION
The SE extract may have an antidepressant effect, which appeared to regulate Nrf2-ARE pathway and increased levels of DA and CORT in the hippocampus and cortex.
Animals
;
Antidepressive Agents/therapeutic use*
;
Behavior, Animal
;
Chenopodiaceae/metabolism*
;
Depression/drug therapy*
;
Disease Models, Animal
;
Hippocampus
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Mice
;
NF-E2-Related Factor 2/metabolism*
;
Network Pharmacology
;
Plant Extracts/therapeutic use*
;
Stress, Psychological/drug therapy*
6.High efficiency of left superior frontal gyrus and the symptom features of major depressive disorder.
Liang ZHANG ; Zexuan LI ; Xiaowen LU ; Jin LIU ; Yumeng JU ; Qiangli DONG ; Jinrong SUN ; Mi WANG ; Bangshan LIU ; Jiang LONG ; Yan ZHANG ; Qiang XU ; Weihui LI ; Xiang LIU ; Hua GUO ; Guangming LU ; Lingjiang LI
Journal of Central South University(Medical Sciences) 2022;47(3):289-300
OBJECTIVES:
Major depressive disorder (MDD) patients with anhedonia tend to have a poor prognosis. The underlying imaging basis for anhedonia in MDD remains largely unknown. The relationship between nodal properties and anhedonia in MDD patients need to be further investigated. Herein, this study aims to explore differences of cerebral functional node characteristics in MDD patients with severe anhedonia (MDD-SA) and MDD patients with mild anhedonia (MDD-MA) before and after the antidepressant treatment.
METHODS:
Ninety participants with current MDD were recruited in this study. 24-Item Hamilton Depression Scale (HAMD-24) and Snaith-Hamilton Pleasure Scale (SHAPS) were used to assess the severity of depression and anhedonia at baseline and the end of 6-months treatment. The MDD patients who scored above the 25th percentile on the SHAPS were assigned to an MDD-SA group (n=19), while those who scored below the 25th percentile were assigned to an MDD-MA group (n=18). All patients in the 2 groups received antidepressant treatment. Functional magnetic resonance imaging (fMRI) images of all the patients were collected at baseline and the end of 6-months treatment. Graph theory was applied to analyze the patients' cerebral functional nodal characteristics, which were measured by efficiency (ei) and degree (ki).
RESULTS:
Repeated measures 2-factor ANCOVA showed significant main effects on group on the ei and ki values of left superior frontal gyrus (LSFG) (P=0.003 and P=0.008, respectively), and on the ei and ki values of left medial orbital-frontal gyrus (LMOFG) (P=0.004 and P=0.008, respectively). Compared with the MDD-MA group, the significantly higher ei and ki values of the LSFG (P=0.015 and P=0.021, respectively), and the significantly higher ei and ki values of the LMOFG (P=0.015 and P=0.037, respectively) were observed in the MDD-SA group at baseline. Meanwhile, higher SHAPS scores could result in higher ei and ki values of LSFG (P=0.019 and P=0.026, respectively), and higher ei value of LMOFG (P=0.040) at baseline; higher SHAPS scores could result in higher ei values of LSFG (P=0.049) at the end of 6-months treatment. The multiple linear regression analysis revealed that sex were negatively correlated with the ei and ki values of LSFG (r= -0.014, P=0.004; r=-1.153, P=0.001, respectively). The onset age of MDD was negatively correlated with the ki value of LSFG (r=-0.420, P=0.034) at the end of 6-months treatment. We also found that SHAPS scores at baseline were positively correlated with the HAMD-24 scores (r=0.387, P=0.022) at the end of 6-months treatment.
CONCLUSIONS
There are obvious differences in nodal properties between the MDD-SA and the MDD-MA patients, such as the high ei of LSFG in the MDD-SA patients, which may be associated with the severity of anhedonia. These nodal properties could be potential biomarkers for the prognosis of MDD. The increased ei and ki values in the LSFG of MDD-SA patients may underlie a compensatory mechanism or protective mechanism. The mechanism may be an important component of the pathological mechanism of MDD-SA. The poor prognosis in the MDD-SA patients suggests that anhedonia may predict a worse prognosis in MDD patients. Sex and onset age of MDD may affect the nodal properties of LSFG at baseline and the end of 6-months treatment.
Anhedonia
;
Antidepressive Agents/therapeutic use*
;
Depressive Disorder, Major/drug therapy*
;
Humans
;
Infant
;
Infant, Newborn
;
Magnetic Resonance Imaging
;
Prefrontal Cortex
7.Xiaoyao San, a Chinese herbal formula, ameliorates depression-like behavior in mice through the AdipoR1/AMPK/ACC pathway in hypothalamus.
Kai-Rui TANG ; Xiao-Wei MO ; Xing-Yi ZHOU ; Yue-Yue CHEN ; Dong-Dong LIU ; Liang-Liang HE ; Qing-Yu MA ; Xiao-Juan LI ; Jia-Xu CHEN
Journal of Integrative Medicine 2022;20(5):442-452
OBJECTIVE:
Depression and metabolic disorders have overlapping psychosocial and pathophysiological causes. Current research is focused on the possible role of adiponectin in regulating common biological mechanisms. Xiaoyao San (XYS), a classic Chinese medicine compound, has been widely used in the treatment of depression and can alleviate metabolic disorders such as lipid or glucose metabolism disorders. However, the ability of XYS to ameliorate depression-like behavior as well as metabolic dysfunction in mice and the underlying mechanisms are unclear.
METHODS:
An in vivo animal model of depression was established by chronic social defeat stress (CSDS). XYS and fluoxetine were administered by gavage to the drug intervention group. Depression-like behaviors were analyzed by the social interaction test, open field test, forced swim test, and elevated plus maze test. Glucose levels were measured using the oral glucose tolerance test. The involvement of certain molecules was validated by immunofluorescence, histopathology, and Western blotting. In vitro, hypothalamic primary neurons were exposed to high glucose to induce neuronal damage, and the neuroprotective effect of XYS was evaluated by cell counting kit-8 assay. Immunofluorescence and Western blotting were used to evaluate the influences of XYS on adiponectin receptor 1 (AdipoR1), adenosine 5'-monophosphate-activated protein kinase (AMPK), acetyl-coenzyme A carboxylase (ACC) and other related proteins.
RESULTS:
XYS ameliorated CSDS-induced depression-like behaviors and glucose tolerance impairment in mice and increased the level of serum adiponectin. XYS also restored Nissl bodies in hypothalamic neurons in mice that exhibited depression-like behaviors and decreased the degree of neuronal morphological damage. In vivo and in vitro studies indicated that XYS increased the expression of AdipoR1 in hypothalamic neurons.
CONCLUSION
Adiponectin may be a key regulator linking depression and metabolic disorders; regulation of the hypothalamic AdipoR1/AMPK/ACC pathway plays an important role in treatment of depression by XYS.
AMP-Activated Protein Kinases/metabolism*
;
Acetyl-CoA Carboxylase/metabolism*
;
Adiponectin/metabolism*
;
Animals
;
Antidepressive Agents/pharmacology*
;
China
;
Depression/drug therapy*
;
Disease Models, Animal
;
Drugs, Chinese Herbal/therapeutic use*
;
Glucose
;
Hypothalamus/metabolism*
;
Mice
;
Receptors, Adiponectin/metabolism*
8.Effect of Rehmanniae Radix on depression-like behavior and hippocampal monoamine neurotransmitters of chronic unpredictable mild stress model rats.
Ping TIAN ; Wei ZHANG ; Kai-Yan LI ; Hong-Wei LI ; Kai MA ; De-En HAN
China Journal of Chinese Materia Medica 2022;47(17):4691-4697
To investigate the effect of Rehmanniae Radix on depression-like behavior and monoamine neurotransmitters of chronic unpredictable mild stress(CUMS) model rats. CUMS combined with isolated feeding was used to induce the depression model of rats. The depression-like behavior of rats was evaluated by sucrose preference test, open field test, and forced swim test. Hematoxylin-Eosin(HE) staining was used to investigate the pathological changes of neurons in the CA1 and CA3 area of hippocampus. Ultra performance liquid chromatography-tandem mass spectrometry(UPLC-MS) was used to detect the contents of 5-hydroxytryptamine(5-HT), 5-hydroxyindoleacetic acid(5-HIAA), dopamine(DA), 3,4-dihydroxyphenylacetic acid(DOPAC), homovanillic acid(HVA), norepinephrine(NE), and 3-methoxy-4-hydroxyphenyl glycol(MHPG) in rats. Western blot was used to detect the protein expressions of tryptophan hydroxylase 2(TPH2), serotonin transporter(SERT), and monoamine oxidase A(MAO-A) in the hippocampus of rats. Compared with the normal group, depressive-like behavior of rats was obvious in the model group. The arrangements of neurons in the CA1 and CA3 area of hippocampus were loose and disorderly. The levels of 5-HT, 5-HIAA, and 5-HT/5-HIAA in the hippocampal area were decreased(P<0.01). The protein expression of TPH2 was decreased(P<0.01), but those of SERT and MAO-A were increased(P<0.01). In the Rehmanniae Radix groups with 1.8 g·kg~(-1) and 7.2 g·kg~(-1), the depression-like behavior of CUMS rats and pathological changes of neurons in CA1, CA3 area of hippocampus were improved. The protein expression of TPH2(P<0.05, P<0.01) was increased, and those of SERT and MAO-A were down-regulated(P<0.05, P<0.01). The levels of 5-HT, 5-HIAA, and 5-HT/5-HIAA in hippocampus were increased(P<0.05, P<0.01). The changes in DA, DOPAC, HVA, DA/(DOPAC +HVA), NE, DHPG, and NE/DHPG were not statistically significant. The results suggested that Rehmanniae Radix improved depression-like behavior of CUMS rats, and the mechanism might be related to the regulation of synthesis, transportation, and metabolism of 5-HT neurotransmitter in the hippocampus.
3,4-Dihydroxyphenylacetic Acid/pharmacology*
;
Animals
;
Antidepressive Agents/therapeutic use*
;
Chromatography, Liquid
;
Depression/drug therapy*
;
Disease Models, Animal
;
Dopamine
;
Eosine Yellowish-(YS)/pharmacology*
;
Hematoxylin/pharmacology*
;
Hippocampus/metabolism*
;
Homovanillic Acid/pharmacology*
;
Hydroxyindoleacetic Acid/metabolism*
;
Methoxyhydroxyphenylglycol/pharmacology*
;
Monoamine Oxidase/metabolism*
;
Neurotransmitter Agents/metabolism*
;
Norepinephrine/pharmacology*
;
Plant Extracts
;
Rats
;
Rehmannia/chemistry*
;
Serotonin/metabolism*
;
Serotonin Plasma Membrane Transport Proteins/pharmacology*
;
Stress, Psychological/metabolism*
;
Tandem Mass Spectrometry
;
Tryptophan Hydroxylase/metabolism*
9.Preventive and therapeutic effect of bioactive component of licorice on antidepressant-induced liver injury.
Wen-Qing MU ; Guang XU ; Jia ZHAO ; Yuan-Yuan CHEN ; Zhao-Fang BAI ; Xiao-He XIAO
China Journal of Chinese Materia Medica 2022;47(22):6146-6154
Since exploding rates of modern mental diseases, application of antidepressants has increased. Worryingly, the antidepressant-induced liver injury has gradually become a serious health burden. Furthermore, since most of the knowledge about antidepressant hepatotoxicity are from pharmacovigilance and clinical case reports and lack of observational studies, the underlying mechanisms are poorly understood and there is a lack of efficient treatment strategies. In this study, antidepressant paroxetine directly triggered inflammasome activation evidenced by caspase-1 activation and downstream effector cytokines interleukin(IL)-1β secretion. The pretreatment of echinatin, a bioactive component of licorice, completely blocked the activation. This study also found that echinatin effectively inhibited the production of inflammasome-independent tumor necrosis factor α(TNF)-α induced by paroxetine. Mechanistically, the accumulation of mitochondrial reactive oxygen species(mtROS) was a key upstream event of paroxetine-induced inflammasome activation, which was dramatically inhibited by echinatin. In the lipopolysaccharide(LPS)-mediated idiosyncratic drug-induced liver injury(IDILI) model, the combination of LPS and paroxetine triggered aberrant activation of the inflammasome to induce idiosyncratic hepatotoxicity, which was reversed by echinatin pretreatment. Notably, this study also found that various bioactive components of licorice had an inhibitory effect on paroxetine-triggered inflammasome activation. Meanwhile, multiple antidepressant-induced aberrant activation of the inflammasome could be completely blocked by echinatin pretreatment. In conclusion, this study provides a novel insight for mechanism of antidepressant-induced liver injury and a new strategy for the treatment of antidepressant-induced hepatotoxicity.
Animals
;
Humans
;
Mice
;
Antidepressive Agents/adverse effects*
;
Chemical and Drug Induced Liver Injury, Chronic/prevention & control*
;
Glycyrrhiza/chemistry*
;
Inflammasomes/drug effects*
;
Interleukin-1beta/metabolism*
;
Lipopolysaccharides/toxicity*
;
Mice, Inbred C57BL
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Paroxetine/adverse effects*
;
Tumor Necrosis Factor-alpha
;
Chalcones/therapeutic use*
10.The ATP Level in the mPFC Mediates the Antidepressant Effect of Calorie Restriction.
Qian WANG ; Ying KONG ; Song LIN ; Ding-Yu WU ; Jian HU ; Lang HUANG ; Wen-Si ZANG ; Xiao-Wen LI ; Jian-Ming YANG ; Tian-Ming GAO
Neuroscience Bulletin 2021;37(9):1303-1313
Food deprivation can rescue obesity and overweight-induced mood disorders, and promote mood performance in normal subjects. Animal studies and clinical research have revealed the antidepressant-like effect of calorie restriction, but little is known about the mechanism of calorie restriction-induced mood modification. Previous studies have found that astrocytes modulate depressive-like behaviors. Inositol 1,4,5-trisphosphate receptor type 2 (IP3R2) is the predominant isoform in mediating astrocyte Ca
Adenosine Triphosphate
;
Animals
;
Antidepressive Agents/therapeutic use*
;
Caloric Restriction
;
Mice
;
Mice, Knockout
;
Prefrontal Cortex

Result Analysis
Print
Save
E-mail