1.Occupationally Acquired Plasmodium knowlesi Malaria in Brunei Darussalam
Gregory JN KOH ; Pg K ISMAIL ; David KOH
Safety and Health at Work 2019;10(1):122-124
Simian malaria is a zoonotic disease caused by Plasmodium knowlesi infection. The common natural reservoir of the parasite is the macaque monkey and the vector is the Anopheles mosquito. Human cases of P. knowlesi infection has been reported in all South East Asian countries in the last decade, and it is currently the most common type of malaria seen in Malaysia and Brunei. Between 2007–2017, 73 cases of P. knowlesi infection were notified and confirmed to the Ministry of Health in Brunei. Of these, 15 cases (21%) were documented as work-related, and 28 other cases (38%) were classified as probably related to work (due to incomplete history). The occupations of those with probable and confirmed work related infections were border patrol officers, Armed Forces and security personnel, Department of Forestry officers, boatmen and researchers. The remaining cases classified as most likely not related to work were possibly acquired via peri-domestic transmission. The risk of this zoonotic infection extends to tourists and overseas visitors who have to travel to the jungle in the course of their work. It can be minimised with the recommended use of prophylaxis for those going on duty into the jungles, application of mosquito/insect repellants, and use of repellant impregnated uniforms and bed nets in jungle camp sites.
Anopheles
;
Arm
;
Asian Continental Ancestry Group
;
Brunei
;
Culicidae
;
Forestry
;
Haplorhini
;
Humans
;
Macaca
;
Malaria
;
Malaysia
;
Occupations
;
Parasites
;
Plasmodium knowlesi
;
Plasmodium
;
Zoonoses
2.Isolation and Characterization of Vaccine Candidate Genes Including CSP and MSP1 in Plasmodium yoelii.
Seon Hee KIM ; Young An BAE ; Ju Young SEOH ; Hyun Jong YANG
The Korean Journal of Parasitology 2017;55(3):255-265
Malaria is an infectious disease affecting humans, which is transmitted by the bite of Anopheles mosquitoes harboring sporozoites of parasitic protozoans belonging to the genus Plasmodium. Despite past achievements to control the protozoan disease, malaria still remains a significant health threat up to now. In this study, we cloned and characterized the full-unit Plasmodium yoelii genes encoding merozoite surface protein 1 (MSP1), circumsporozoite protein (CSP), and Duffy-binding protein (DBP), each of which can be applied for investigations to obtain potent protective vaccines in the rodent malaria model, due to their specific expression patterns during the parasite life cycle. Recombinant fragments corresponding to the middle and C-terminal regions of PyMSP1 and PyCSP, respectively, displayed strong reactivity against P. yoelii-infected mice sera. Specific native antigens invoking strong humoral immune response during the primary and secondary infections of P. yoelii were also abundantly detected in experimental ICR mice. The low or negligible parasitemia observed in the secondary infected mice was likely to result from the neutralizing action of the protective antibodies. Identification of these antigenic proteins might provide the necessary information and means to characterize additional vaccine candidate antigens, selected solely on their ability to produce the protective antibodies.
Animals
;
Anopheles
;
Antibodies
;
Clone Cells
;
Coinfection
;
Communicable Diseases
;
Culicidae
;
Humans
;
Immunity, Humoral
;
Life Cycle Stages
;
Malaria
;
Merozoite Surface Protein 1*
;
Mice
;
Mice, Inbred ICR
;
Parasitemia
;
Parasites
;
Plasmodium yoelii*
;
Plasmodium*
;
Rodentia
;
Sporozoites
;
Vaccines
3.Ecological characteristics and current status of infectious disease vectors in South Korea.
Journal of the Korean Medical Association 2017;60(6):458-467
In light of global climate change, the seasonal and geographical distribution of vector species, especially mosquitoes, chigger mites, and ticks, are of great importance for human beings residing in rural and urban environments. A total of 12 species belonging to 4 genera have been identified as vector mosquitoes in the Republic of Korea. The most common of the 56 mosquito species in this country from 2013 through 2015 was found to be a malaria vector, Anopheles sinensis s.l. (species ratio [SR] 52%); followed by a potential vector of West Nile virus, Aedes vexans nipponii (SR 38%); a Japanese encephalitis vector, Culex tritaeniorhynchus (SR 6%); a West Nile virus vector, Culex pipiens (SR 3%); and a dengue and Zika virus vector, Ae. albopictus (SR 0.3%). Of the scrub typhus vectors, Leptotrombidium scutellare is the predominant chigger mite in Gyongnam province and Jeju island, whereas L. pallidum is the predominant species in other areas of Korea. Ticks were found to be prevalent in most environmental conditions, and high levels of their activity were consistently observed from May to September. Haemaphysalis species of ticks were mostly collected in grasslands, whereas Ixodes species were frequently found in coniferous forests. Haemaphysalis longicornis, known as the main vector of severe fever with thrombocytopenia syndrome, was the predominant species and was widely distributed throughout the country.
Aedes
;
Anopheles
;
Climate Change
;
Communicable Diseases*
;
Coniferophyta
;
Culex
;
Culicidae
;
Dengue
;
Disease Vectors*
;
Encephalitis, Japanese
;
Fever
;
Forests
;
Globus Pallidus
;
Grassland
;
Humans
;
Ixodes
;
Korea*
;
Malaria
;
Mites
;
Republic of Korea
;
Scrub Typhus
;
Seasons
;
Thrombocytopenia
;
Ticks
;
Trombiculidae
;
West Nile virus
;
Zika Virus
4.Finding Wolbachia in Filarial larvae and Culicidae Mosquitoes in Upper Egypt Governorate.
Ahmed K DYAB ; Lamia A GALAL ; Abeer E MAHMOUD ; Yasser MOKHTAR
The Korean Journal of Parasitology 2016;54(3):265-272
Wolbachia is an obligatory intracellular endosymbiotic bacterium, present in over 20% of all insects altering insect reproductive capabilities and in a wide range of filarial worms which is essential for worm survival and reproduction. In Egypt, no available data were found about Wolbachia searching for it in either mosquitoes or filarial worms. Thus, we aimed to identify the possible concurrent presence of Wolbachia within different mosquitoes and filarial parasites, in Assiut Governorate, Egypt using multiplex PCR. Initially, 6 pools were detected positive for Wolbachia by single PCR. The simultaneous detection of Wolbachia and filarial parasites (Wuchereria bancrofti, Dirofilaria immitis, and Dirofilaria repens) by multiplex PCR was spotted in 5 out of 6 pools, with an overall estimated rate of infection (ERI) of 0.24%. Unexpectedly, the highest ERI (0.53%) was for Anopheles pharoensis with related Wolbachia and W. bancrofti, followed by Aedes (0.42%) and Culex (0.26%). We also observed that Wolbachia altered Culex spp. as a primary vector for W. bancrofti to be replaced by Anopheles sp. Wolbachia within filaria-infected mosquitoes in our locality gives a hope to use bacteria as a new control trend simultaneously targeting the vector and filarial parasites.
Aedes
;
Anopheles
;
Bacteria
;
Culex
;
Culicidae*
;
Dirofilaria
;
Dirofilaria immitis
;
Dirofilaria repens
;
Egypt*
;
Hope
;
Insects
;
Larva*
;
Multiplex Polymerase Chain Reaction
;
Parasites
;
Polymerase Chain Reaction
;
Reproduction
;
Wolbachia*
;
Wuchereria bancrofti
5.Xenomonitoring of Different Filarial Nematodes Using Single and Multiplex PCR in Mosquitoes from Assiut Governorate, Egypt.
Ahmed Kamal DYAB ; Lamia Ahmed GALAL ; Abeer El Sayed MAHMOUD ; Yasser MOKHTAR
The Korean Journal of Parasitology 2015;53(1):77-83
Wuchereria bancrofti, Dirofilaria immitis, and Dirofilaria repens are filarial nematodes transmitted by mosquitoes belonging to Culex, Aedes, and Anopheles genera. Screening by vector dissection is a tiresome technique. We aimed to screen filarial parasites in their vectors by single and multiplex PCR and evaluate the usefulness of multiplex PCR as a rapid xenomonitoring and simultaneous differentiation tool, in area where 3 filarial parasites are coexisting. Female mosquitoes were collected from 7 localities in Assiut Governorate, were microscopically identified and divided into pools according to their species and collection site. Detection of W. bancrofti, D. immitis, and D. repens using single PCR was reached followed by multiplex PCR. Usefulness of multiplex PCR was evaluated by testing mosquito pools to know which genera and species are used by filarial parasites as a vector. An overall estimated rate of infection (ERI) in mosquitoes was 0.6%; the highest was Culex spp. (0.47%). W. bancrofti, D. immitis, and D. repens could be simultaneously and differentially detected in infected vectors by using multiplex PCR. Out of 100 mosquito pools, 8 were positive for W. bancrofti (ERI of 0.33%) and 3 pools each were positive for D. immitis and D. repens (ERI 0.12%). The technique showed 100% sensitivity and 98% specificity. El-Nikhila, El-Matiaa villages, and Sahel Seleem district in Assiut Governorate, Egypt are still endemic foci for filarial parasites. Multiplex PCR offers a reliable procedure for molecular xenomonitoring of filariasis within their respective vectors in endemic areas. Therefore, it is recommended for evaluation of mosquito infection after lymphatic filariasis eradication programs.
Aedes/*parasitology
;
Animals
;
Anopheles/*parasitology
;
Culex/*parasitology
;
Dirofilaria immitis/genetics/*isolation & purification
;
Dirofilaria repens/genetics/*isolation & purification
;
Egypt
;
Entomology/methods
;
Female
;
Multiplex Polymerase Chain Reaction/*methods
;
Parasitology/methods
;
Sensitivity and Specificity
;
Wuchereria bancrofti/genetics/*isolation & purification
6.Xenomonitoring of Different Filarial Nematodes Using Single and Multiplex PCR in Mosquitoes from Assiut Governorate, Egypt.
Ahmed Kamal DYAB ; Lamia Ahmed GALAL ; Abeer El Sayed MAHMOUD ; Yasser MOKHTAR
The Korean Journal of Parasitology 2015;53(1):77-83
Wuchereria bancrofti, Dirofilaria immitis, and Dirofilaria repens are filarial nematodes transmitted by mosquitoes belonging to Culex, Aedes, and Anopheles genera. Screening by vector dissection is a tiresome technique. We aimed to screen filarial parasites in their vectors by single and multiplex PCR and evaluate the usefulness of multiplex PCR as a rapid xenomonitoring and simultaneous differentiation tool, in area where 3 filarial parasites are coexisting. Female mosquitoes were collected from 7 localities in Assiut Governorate, were microscopically identified and divided into pools according to their species and collection site. Detection of W. bancrofti, D. immitis, and D. repens using single PCR was reached followed by multiplex PCR. Usefulness of multiplex PCR was evaluated by testing mosquito pools to know which genera and species are used by filarial parasites as a vector. An overall estimated rate of infection (ERI) in mosquitoes was 0.6%; the highest was Culex spp. (0.47%). W. bancrofti, D. immitis, and D. repens could be simultaneously and differentially detected in infected vectors by using multiplex PCR. Out of 100 mosquito pools, 8 were positive for W. bancrofti (ERI of 0.33%) and 3 pools each were positive for D. immitis and D. repens (ERI 0.12%). The technique showed 100% sensitivity and 98% specificity. El-Nikhila, El-Matiaa villages, and Sahel Seleem district in Assiut Governorate, Egypt are still endemic foci for filarial parasites. Multiplex PCR offers a reliable procedure for molecular xenomonitoring of filariasis within their respective vectors in endemic areas. Therefore, it is recommended for evaluation of mosquito infection after lymphatic filariasis eradication programs.
Aedes/*parasitology
;
Animals
;
Anopheles/*parasitology
;
Culex/*parasitology
;
Dirofilaria immitis/genetics/*isolation & purification
;
Dirofilaria repens/genetics/*isolation & purification
;
Egypt
;
Entomology/methods
;
Female
;
Multiplex Polymerase Chain Reaction/*methods
;
Parasitology/methods
;
Sensitivity and Specificity
;
Wuchereria bancrofti/genetics/*isolation & purification
7.Omics of vector mosquitoes: a big data platform for vector biology and vector-borne diseases.
Yang WU ; Lihua XIE ; Peiwen LIU ; Xiaocong LI ; Guiyun YAN ; Xiaoguang CHEN
Journal of Southern Medical University 2015;35(5):625-630
Recently the studies on mosquito genomics, transcriptomics and small RNAomics developed rapidly with the novel biotechnologies of the next generation sequencing techniques. The genome sequences of several important vector mosquitoes including Anopheles gambiae, Culex quinquefasciatus, and Aedes aegypti have been published. The genome sizes vary among the different species of mosquitoes and are consistent with the number of the repeat regions. The released genome sequences facilitate gene cloning and identification as for OBP, OR and dsx genes. Transcriptomics provides a useful tool for functional analyses of the mosquito genes, and using this technique, the molecular basis of mosquito blooding, gland proteins and diapauses have been explored. Studies on small RNAomics suggest important roles of miRNAs and piRNAs in ovary development, blood digestion, and immunity against virus infection. The studies on mosquito omics have generated a big data platform for investigation of vector biology and vector-transmitted disease prevention.
Aedes
;
genetics
;
Animals
;
Anopheles
;
genetics
;
Culex
;
genetics
;
Gene Expression Profiling
;
Genome, Insect
;
Genomics
;
High-Throughput Nucleotide Sequencing
;
MicroRNAs
8.Analysis of population genetic structure of Anopheles sinensis based on mitochondrial DNA cytochrome oxidase subunit I gene fragment.
Xuelian CHANG ; Daibin ZHONG ; Xiaocong LI ; Yaming HUANG ; Guoding ZHU ; Xing WEI ; Hui XIA ; Xiaoguang CHEN ; Qiang FANG
Journal of Southern Medical University 2015;35(2):234-247
OBJECTIVETo study the population genetic variation, genetic diversity and phylogenesis of Anopheles sinensis in China.
METHODSAnopheles sinensis samples collected from Shandong, Anhui, Jiangsu, Guizhou, and Yunnan Provinces and Guangxi Zhuang Autonomous Region with different geographical conditions between 2010 and 2012 were analyzed by mitochondrial DNA cytochrome oxidase subunit I (mtDNA-COI) gene amplification and sequencing. Bioedit 7.0 and DnaSP 5.0 software was used to compare the gene sequences and analyze the population genetic structure, respectively. Arlequin 3.1 was used to calculate the genetic distance and parameters of population differentiation. The relationship between the geographic and genetic distances was analyzed using IBD Web Service. PHYLIP 3.6 was used to construct the phylogenetic tree.
RESULTSPCR amplification and sequencing was performed successfully for 6 Anopheles sinensis populations containing 123 female mosquitoes. The length of mtDNA-COI gene fragment was 841 bp with an average A+T content of 71.2% and G+C content of 28.8%. High nucleotide diversity and genetic differentiation were observed among the Anopheles sinensis populations based on mtDNA-COI gene. Analysis of the molecular variance revealed a greater variation between populations than that within populations with isolation by distance between the populations. The Anopheles sinensis populations appeared to have undergone expansion, but the Yunnan population constituted an isolated branch in the phylogenetic tree.
CONCLUSIONmtDNA-COI can serve as the molecular marker to analyze population genetic variation and phylogenesis of Anopheles sinensis. The Yunnan population shows a phylogenetic difference from the other populations analyzed in this study.
Animals ; Anopheles ; genetics ; China ; DNA, Mitochondrial ; genetics ; Electron Transport Complex IV ; genetics ; Female ; Genetic Variation ; Genetics, Population ; Phylogeny
9.Isolation and identification of the Akabane virus from mosquitoes in Yunnan Province, China.
Yun FENG ; Biao HE ; Shihong FU ; Weihong YANG ; Yuzhen ZHANG ; Changchun TU ; Guodong LIANG ; Hailin ZHANG
Chinese Journal of Virology 2015;31(1):51-57
To evaluate the prevalence of mosquito-borne viruses in Manshi and Ruili (Yunnan Province, China), we collected 2 149 mosquitoes (17 species) in August 2010. Virus isolation was undertaken by the cul- ture of baby hamster kidney cells (BHK-21 cells). Two virus-like isolates were obtained: DHL10M117 was isolated from collected in Mangshi; DHL10M110 was obtained from Anopheles vagus collected in Rui- li. Both isolates caused cytopathic effects,illness and death in suckling mice inoculated with these isolates via the intracerebral route. Two positive amplicons, 702-bp from the S segment and 456-bp from the M segment,were obtained using reverse transcription-polymerase chain reaction using primers specific for the Akabane virus (AKV). Phylogenetic analysis suggested that these two virus stains had a distant relation- ship with AKVs from Kenya and Australia,but were genetically close to those from Japan,South Korea, and Taiwan. However,they were separate from other Asian strains and grouped into a small branch. The highest nucleotide and amino-acid sequence identity of the S segment was found with the CY-77 strain from Taiwan (96.6% and 99.6% for DHL10M117 and 96.7% and 100% for DHL10M110,respectively). Com- parison of the M segment showed they shared the highest amino acid identity with CY-77 (99.6% and 100%, respectively), whereas the highest nucleotide identity was found with the Iriki strain from Japan (99.6% and 100%, respectively). Compared with the MP496 strain from Kenya,they displayed lower lev- els of sequence homology, at 69.7% and 70.0% for nucleotide sequences of the two loci,and 91. 0% for a- mino acids. Our results identified that DHL10M117 and DHL10M110 were strains of AKV,and provided molecular biological evidence for the existence of AKV in Yunnan Province. These AKV strains that are circulating in Yunnan Province share a close genetic relationship with strains from the rest of Asia. Culex tritaeniorhynchus and Anopheles vagus may serve as transmission vectors.
Amino Acid Sequence
;
Animals
;
Anopheles
;
virology
;
Base Sequence
;
Bunyaviridae Infections
;
virology
;
China
;
Cricetinae
;
Female
;
Humans
;
Insect Vectors
;
virology
;
Male
;
Mice
;
Orthobunyavirus
;
classification
;
genetics
;
isolation & purification
;
physiology
;
Phylogeny
;
Sequence Homology
;
Viral Proteins
;
chemistry
;
genetics
10.Molecular characterization, biological forms and sporozoite rate of Anopheles stephensi in southern Iran.
Ali Reza CHAVSHIN ; ; Mohammad Ali OSHAGHI ; Hasan VATANDOOST ; Ahmad Ali HANAFI-BOJD ; Ahmad RAEISI ; Fatemeh NIKPOOR
Asian Pacific Journal of Tropical Biomedicine 2014;4(1):47-51
OBJECTIVETo identify the biological forms, sporozoite rate and molecular characterization of the Anopheles stephensi (An. stephensi) in Hormozgan and Sistan-Baluchistan provinces, the most important malarious areas in Iran.
METHODSWild live An. stephensi samples were collected from different malarious areas in southern Iran. The biological forms were identified based on number of egg-ridges. Molecular characterization of biological forms was verified by analysis of the mitochondrial cytochrome oxidase subunit I and II (mtDNA-COI/COII). The Plasmodium infection was examined in the wild female specimens by species-specific nested-PCR method.
RESULTSResults showed that all three biological forms including mysorensis, intermediate and type are present in the study areas. Molecular investigations revealed no genetic variation between mtDNA COI/COII sequences of the biological forms and no Plasmodium parasites was detected in the collected mosquito samples.
CONCLUSIONSPresence of three biological forms with identical sequences showed that the known biological forms belong to a single taxon and the various vectorial capacities reported for these forms are more likely corresponded to other epidemiological factors than to the morphotype of the populations. Lack of malaria parasite infection in An. stephensi, the most important vector of malaria, may be partly due to the success and achievement of ongoing active malaria control program in the region.
Animals ; Anopheles ; genetics ; parasitology ; DNA, Mitochondrial ; genetics ; DNA, Protozoan ; genetics ; Eggs ; classification ; parasitology ; Female ; Iran ; Male ; Parasite Load ; Plasmodium ; genetics ; isolation & purification ; Polymerase Chain Reaction ; Sporozoites

Result Analysis
Print
Save
E-mail