1.Vascular Transcriptome Profiling Reveals Aging-Related Genes in Angiotensin Ⅱ-Induced Hypertensive Mouse Aortas.
Shuang Jie LV ; Yang Nan DING ; Xiao Ya PEI ; Xiang ZHAO ; De Long HAO ; Zhu Qin ZHANG ; Hou Zao CHEN ; De Pei LIU
Chinese Medical Sciences Journal 2020;35(1):43-53
Objective Angiotensin Ⅱ (Ang Ⅱ)-induced vascular damage is a major risk of hypertension. However, the underlying molecular mechanism of AngⅡ-induced vascular damage is still unclear. In this study, we explored the novel mechanism associated with Ang II-induced hypertension. Methods We treated 8- to 12-week-old C57BL/6J male mice with saline and Ang Ⅱ(0.72 mg/kg·d) for 28 days, respectively. Then the RNA of the media from the collected mice aortas was extracted for transcriptome sequencing. Principal component analysis was applied to show a clear separation of different samples and the distribution of differentially expressed genes was manifested by Volcano plot. Functional annotations including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were performed to reveal the molecular mechanism of Ang Ⅱ-induced hypertension. Finally, the differentially expressed genes were validated by using quantitative real-time PCR. Results The result revealed that a total of 773 genes, including 599 up-regulated genes and 174 down-regulated genes, were differentially expressed in the aorta of Ang Ⅱ-induced hypertension mice model. Functional analysis of differentially expressed genes manifested that various cellular processes may be involved in the Ang Ⅱ-induced hypertension, including some pathways associated with hypertension such as extracellular matrix, inflammation and immune response. Interestingly, we also found that the differentially expressed genes were enriched in vascular aging pathway, and further validated that the expression levels of insulin-like growth factor 1 and adiponectin were significantly increased (P<0.05). Conclusion We identify that vascular aging is involved in Ang Ⅱ-induced hypertension, and insulin-like growth factor 1 and adiponectin may be important candidate genes leading to vascular aging.
Aging
;
Angiotensin II
;
Animals
;
Aorta/physiopathology*
;
Blood Pressure/genetics*
;
Gene Expression Profiling/methods*
;
Gene Ontology
;
Hypertension/genetics*
;
Male
;
Mice, Inbred C57BL
;
Reverse Transcriptase Polymerase Chain Reaction
2.Protective Effect of Angiotensin (1-7) on Silicotic Fibrosis in Rats.
Bo Nan ZHANG ; Hong XU ; Xue Min GAO ; Gui Zhen ZHANG ; Xin ZHANG ; Fang YANG
Biomedical and Environmental Sciences 2019;32(6):419-426
OBJECTIVE:
Silicosis, caused by inhalation of silica dust, is the most serious occupational disease in China and the aim of present study was to explore the protective effect of Ang (1-7) on silicotic fibrosis and myofibroblast differentiation induced by Ang II.
METHODS:
HOPE-MED 8050 exposure control apparatus was used to establish the rat silicosis model. Pathological changes and collagen deposition of the lung tissue were examined by H.E. and VG staining, respectively. The localizations of ACE2 and α-smooth muscle actin (α-SMA) in the lung were detected by immunohistochemistry. Expression levels of collagen type I, α-SMA, ACE2, and Mas in the lung tissue and fibroblasts were examined by western blot. Levels of ACE2, Ang (1-7), and Ang II in serum were determined by ELISA. Co-localization of ACE2 and α-SMA in fibroblasts was detected by immunofluorescence.
RESULTS:
Ang (1-7) induced pathological changes and enhanced collagen deposition in vivo. Ang (1-7) decreased the expressions of collagen type I and α-SMA and increased the expressions of ACE2 and Mas in the silicotic rat lung tissue and fibroblasts stimulated by Ang II. Ang (1-7) increased the levels of ACE2 and Ang (1-7) and decreased the level of Ang II in silicotic rat serum. A779 enhanced the protective effect of Ang (1-7) in fibroblasts stimulated by Ang II.
CONCLUSION
Ang (1-7) exerted protective effect on silicotic fibrosis and myofibroblast differentiation induced by Ang II by regulating ACE2-Ang (1-7)-Mas axis.
Actins
;
metabolism
;
Angiotensin I
;
blood
;
pharmacology
;
therapeutic use
;
Angiotensin II
;
blood
;
Animals
;
Animals, Newborn
;
Cell Differentiation
;
drug effects
;
Cells, Cultured
;
Collagen Type I
;
metabolism
;
Disease Models, Animal
;
Lung
;
metabolism
;
pathology
;
Myofibroblasts
;
drug effects
;
Peptide Fragments
;
blood
;
pharmacology
;
therapeutic use
;
Peptidyl-Dipeptidase A
;
metabolism
;
Rats, Wistar
;
Silicosis
;
metabolism
;
pathology
;
prevention & control
3.Expression of Class I and Class II a/b Histone Deacetylase is Dysregulated in Hypertensive Animal Models.
Hae Jin KEE ; Gwi Ran KIM ; Ming Quan LIN ; Sin Young CHOI ; Yuhee RYU ; Li JIN ; Zhe Hao PIAO ; Myung Ho JEONG
Korean Circulation Journal 2017;47(3):392-400
BACKGROUND AND OBJECTIVES: Dysregulation of histone deacetylase expression and enzymatic activity is associated with a number of diseases. It has been reported that protein levels of histone deacetylase (HDAC)1 and HDAC5 increase during human pulmonary hypertension, and that the enzymatic activity of HDAC6 is induced in a chronic hypertensive animal model. This study investigated the protein expression profiles of class I and II a/b HDACs in three systemic hypertension models. SUBJECTS AND METHODS: We used three different hypertensive animal models: (i) Wistar-Kyoto rats (n=8) and spontaneously hypertensive rats (SHR; n=8), (ii) mice infused with saline or angiotensin II to induce hypertension, via osmotic mini-pump for 2 weeks, and (iii) mice that were allowed to drink L-N(G)-nitro-L-arginine methyl ester (L-NAME) to induce hypertension. RESULTS: SHR showed high systolic, diastolic, and mean blood pressures. Similar increases in systolic blood pressure were observed in angiotensin II or L-NAME-induced hypertensive mice. In SHR, class IIa HDAC (HDAC4, 5, and 7) and class IIb HDAC (HDAC6 and 10) protein expression were significantly increased. In addition, a HDAC3 protein expression was induced in SHR. However, in L-NAME mice, class IIa HDAC protein levels (HDAC4, 5, 7, and 9) were significantly reduced. HDAC8 protein levels were significantly reduced both in angiotensin II mice and in SHR. CONCLUSION: These results indicate that dysregulation of class I and class II HDAC protein is closely associated with chronic hypertension.
Angiotensin II
;
Animals*
;
Blood Pressure
;
Histone Deacetylases*
;
Histones*
;
Humans
;
Hypertension
;
Hypertension, Pulmonary
;
Mice
;
Models, Animal*
;
NG-Nitroarginine Methyl Ester
;
Rats
;
Rats, Inbred SHR
4.The role of renal proximal tubule transport in the regulation of blood pressure.
Shoko HORITA ; Motonobu NAKAMURA ; Masashi SUZUKI ; Nobuhiko SATOH ; Atsushi SUZUKI ; Yukio HOMMA ; Masaomi NANGAKU
Kidney Research and Clinical Practice 2017;36(1):12-21
The electrogenic sodium/bicarbonate cotransporter 1 (NBCe1) on the basolateral side of the renal proximal tubule plays a pivotal role in systemic acid-base homeostasis. Mutations in the gene encoding NBCe1 cause severe proximal renal tubular acidosis accompanied by other extrarenal symptoms. The proximal tubule reabsorbs most of the sodium filtered in the glomerulus, contributing to the regulation of plasma volume and blood pressure. NBCe1 and other sodium transporters in the proximal tubule are regulated by hormones, such as angiotensin II and insulin. Angiotensin II is probably the most important stimulator of sodium reabsorption. Proximal tubule AT(1A) receptor is crucial for the systemic pressor effect of angiotensin II. In rodents and rabbits, the effect on proximal tubule NBCe1 is biphasic; at low concentration, angiotensin II stimulates NBCe1 via PKC/cAMP/ERK, whereas at high concentration, it inhibits NBCe1 via NO/cGMP/cGKII. In contrast, in human proximal tubule, angiotensin II has a dose-dependent monophasic stimulatory effect via NO/cGMP/ERK. Insulin stimulates the proximal tubule sodium transport, which is IRS2-dependent. We found that in insulin resistance and overt diabetic nephropathy, stimulatory effect of insulin on proximal tubule transport was preserved. Our results suggest that the preserved stimulation of the proximal tubule enhances sodium reabsorption, contributing to the pathogenesis of hypertension with metabolic syndrome. We describe recent findings regarding the role of proximal tubule transport in the regulation of blood pressure, focusing on the effects of angiotensin II and insulin.
Acidosis, Renal Tubular
;
Angiotensin II
;
Blood Pressure*
;
Diabetic Nephropathies
;
Homeostasis
;
Humans
;
Hypertension
;
Insulin
;
Insulin Resistance
;
Kidney Tubules, Proximal
;
Plasma Volume
;
Rabbits
;
Rodentia
;
Sodium
;
Sodium-Bicarbonate Symporters
5.Antihypertensive effect of Ganjang (traditional Korean soy sauce) on Sprague-Dawley Rats.
Eun Gyung MUN ; Hee Sook SOHN ; Mi Sun KIM ; Youn Soo CHA
Nutrition Research and Practice 2017;11(5):388-395
BACKGROUND/OBJECTIVES: Although Korean fermented foods contain large amounts of salt, which is known to exacerbate health problems, these foods still have beneficial effects such as anti-hypertension, anti-cancer, and anti-colitis properties. We hypothesized that ganjang may have different effects on blood pressure compared to same concentrations of salt. MATERIALS/METHODS: Sprague-Dawley rats were divided into control (CT), NaCl (NC), and ganjang (GJ) groups and orally administered with 8% NaCl concentration for 9 weeks. The systolic blood pressure (SBP), serum chemistry, Na⁺ and K⁺ concentrations and renal gene expressions were measured. RESULTS: The SBP was significantly increased in the NC group compared to the GJ and CT groups. In addition, the Na+ concentration in urine was higher in the GJ and NC groups than the CT group, but the urine volume was increased in the GJ group compared to the other groups. The serum renin levels were decreased in the GJ group compared to the CT group, while the serum aldosterone level was decreased in the GJ group relative to the NC group. The mRNA expression of the renin, angiotensin II type I receptor, and mineralocorticoid receptor were significantly lower in the GJ group compared to other groups. Furthermore, GJ group showed the lowest levels of genes for Na⁺ transporter in kidney cortex such as Na⁺/K⁺ ATPaseα1 (NKAα1), Na⁺/H⁺ exchanger 3 (NHE3), Na⁺/HCO₃⁻ co-exchanger (NBC), and carbonic anhydrases II (CAII). CONCLUSIONS: The decreased SBP in the GJ could be due to decreased renin and aldosterone levels in serum and increased urinary volume and excretion of Na⁺ with its transporter gene alteration. Therefore, ganjang may have antihypertensive effect despite its high contents of salt.
Aldosterone
;
Angiotensin II
;
Blood Pressure
;
Carbonic Anhydrases
;
Chemistry
;
Gene Expression
;
Hypertension
;
Kidney Cortex
;
Rats, Sprague-Dawley*
;
Receptors, Mineralocorticoid
;
Renin
;
Renin-Angiotensin System
;
RNA, Messenger
6.Renal intercalated cells and blood pressure regulation.
Kidney Research and Clinical Practice 2017;36(4):305-317
Type B and non-A, non-B intercalated cells are found within the connecting tubule and the cortical collecting duct. Of these cell types, type B intercalated cells are known to mediate Cl⁻ absorption and HCO₃⁻ secretion largely through pendrin-dependent Cl⁻/HCO₃⁻ exchange. This exchange is stimulated by angiotensin II administration and is also stimulated in models of metabolic alkalosis, for instance after aldosterone or NaHCO₃ administration. In some rodent models, pendrin-mediated HCO₃⁻ secretion modulates acid-base balance. However, the role of pendrin in blood pressure regulation is likely of more physiological or clinical significance. Pendrin regulates blood pressure not only by mediating aldosterone-sensitive Cl⁻ absorption, but also by modulating the aldosterone response for epithelial Na⁺ channel (ENaC)-mediated Na⁺ absorption. Pendrin regulates ENaC through changes in open channel of probability, channel surface density, and channels subunit total protein abundance. Thus, aldosterone stimulates ENaC activity through both direct and indirect effects, the latter occurring through its stimulation of pendrin expression and function. Therefore, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contributory role of pendrin in distal nephron function and blood pressure.
Absorption
;
Acid-Base Equilibrium
;
Adrenal Medulla
;
Aldosterone
;
Alkalosis
;
Angiotensin II
;
Angiotensins
;
Blood Pressure*
;
Catecholamines
;
Epithelial Sodium Channels
;
Negotiating
;
Nephrons
;
Rodentia
7.Renal intercalated cells and blood pressure regulation.
Kidney Research and Clinical Practice 2017;36(4):305-317
Type B and non-A, non-B intercalated cells are found within the connecting tubule and the cortical collecting duct. Of these cell types, type B intercalated cells are known to mediate Cl⁻ absorption and HCO₃⁻ secretion largely through pendrin-dependent Cl⁻/HCO₃⁻ exchange. This exchange is stimulated by angiotensin II administration and is also stimulated in models of metabolic alkalosis, for instance after aldosterone or NaHCO₃ administration. In some rodent models, pendrin-mediated HCO₃⁻ secretion modulates acid-base balance. However, the role of pendrin in blood pressure regulation is likely of more physiological or clinical significance. Pendrin regulates blood pressure not only by mediating aldosterone-sensitive Cl⁻ absorption, but also by modulating the aldosterone response for epithelial Na⁺ channel (ENaC)-mediated Na⁺ absorption. Pendrin regulates ENaC through changes in open channel of probability, channel surface density, and channels subunit total protein abundance. Thus, aldosterone stimulates ENaC activity through both direct and indirect effects, the latter occurring through its stimulation of pendrin expression and function. Therefore, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contributory role of pendrin in distal nephron function and blood pressure.
Absorption
;
Acid-Base Equilibrium
;
Adrenal Medulla
;
Aldosterone
;
Alkalosis
;
Angiotensin II
;
Angiotensins
;
Blood Pressure*
;
Catecholamines
;
Epithelial Sodium Channels
;
Negotiating
;
Nephrons
;
Rodentia
8.24-Hour blood pressure response to lower dose (30 mg) fimasartan in Korean patients with mild to moderate essential hypertension.
Hae Young LEE ; Cheol Ho KIM ; Jae Kwan SONG ; Shung Chull CHAE ; Myung Ho JEONG ; Dong Soo KIM ; Byung Hee OH
The Korean Journal of Internal Medicine 2017;32(6):1025-1036
BACKGROUND/AIMS: Fimasartan is an angiotensin type 1 receptor blocker (ARB) which has comparable efficacy and tolerability with other ARBs. The aim of this study was to evaluate 24-hour blood pressure (BP) lowering efficacy and the tolerability of the low dose fimasartan compared with valsartan in patients with mild to moderate hypertension. METHODS: This study was a phase II, prospective, multicenter, randomized, double-blind, parallel-grouped trial. A total of 75 hypertensive patients, whose mean ambulatory BP monitoring values were ≥ 135/85 mmHg, were randomized to either fimasartan 30 mg or valsartan 80 mg daily. The primary efficacy endpoint was the change in the mean 24-hour systolic BP (SBP) values from the baseline and at the week 8. Secondary endpoints included the change in the mean 24-hour diastolic BP values, the daytime and the nighttime mean BP values at week 8, the trough-to-peak (T/P) ratio and the smoothness index. RESULTS: At week 8, the mean 24-hour SBP values significantly decreased in both groups; –10.5 ± 11.9 mmHg (p < 0.0001) in the fimasartan group and –5.5 ± 11.6 mmHg (p = 0.0307) in the valsartan group. The difference between two groups was 4.3 ± 2.9 mmHg but there was no statistical significance (p = 0.1392). The global T/P ratio in the fimasartan 30 mg groups were 0.48 and 0.40 in the valsartan 80 mg group, respectively (p = 0.3411). The most frequent adverse events (AEs) were acute pharyngitis and there were no cases of severe AEs. CONCLUSIONS: In mild-to-moderate hypertensive patients, low dose (30 mg) fimasartan showed comparable 24-hour BP lowering efficacy compared with valsartan (80 mg). There was no difference in tolerability between two groups.
Angiotensin II Type 1 Receptor Blockers
;
Blood Pressure Monitoring, Ambulatory
;
Blood Pressure*
;
Humans
;
Hypertension*
;
Pharyngitis
;
Prospective Studies
;
Receptor, Angiotensin, Type 1
;
Valsartan
9.Comparative effects of angiotensin II and angiotensin-(4-8) on blood pressure and ANP secretion in rats.
Hoang Thi Ai PHUONG ; Lamei YU ; Byung Mun PARK ; Suhn Hee KIM
The Korean Journal of Physiology and Pharmacology 2017;21(6):667-674
Angiotensin II (Ang II) is metabolized from N-terminal by aminopeptidases and from C-terminal by Ang converting enzyme (ACE) to generate several truncated angiotensin peptides (Angs). The truncated Angs have different biological effects but it remains unknown whether Ang-(4-8) is an active peptide. The present study was to investigate the effects of Ang-(4-8) on hemodynamics and atrial natriuretic peptide (ANP) secretion using isolated beating rat atria. Atrial stretch caused increases in atrial contractility by 60% and in ANP secretion by 70%. Ang-(4-8) (0.01, 0.1, and 1 µM) suppressed high stretch-induced ANP secretion in a dose-dependent manner. Ang-(4-8) (0.1 µM)-induced suppression of ANP secretion was attenuated by the pretreatment with an antagonist of Ang type 1 receptor (AT₁R) but not by an antagonist of AT₂R or AT₄R. Ang-(4-8)-induced suppression of ANP secretion was attenuated by the pretreatment with inhibitor of phospholipase (PLC), inositol triphosphate (IP₃) receptor, or nonspecific protein kinase C (PKC). The potency of Ang-(4-8) to inhibit ANP secretion was similar to Ang II. However, Ang-(4-8) 10 µM caused an increased mean arterial pressure which was similar to that by 1 nM Ang II. Therefore, we suggest that Ang-(4-8) suppresses high stretch-induced ANP secretion through the AT₁R and PLC/IP₃/PKC pathway. Ang-(4-8) is a biologically active peptide which functions as an inhibition mechanism of ANP secretion and an increment of blood pressure.
Aminopeptidases
;
Angiotensin II*
;
Angiotensins*
;
Animals
;
Arterial Pressure
;
Atrial Natriuretic Factor*
;
Blood Pressure*
;
Heart
;
Hemodynamics
;
Inositol
;
Peptides
;
Phospholipases
;
Protein Kinase C
;
Rats*
;
Receptor, Angiotensin, Type 1
;
Signal Transduction
10.High fat diet confers vascular hyper-contractility against angiotensin II through upregulation of MLCK and CPI-17.
The Korean Journal of Physiology and Pharmacology 2017;21(1):99-106
Obesity is a critical risk factor for the hypertension. Although angiotensin II (Ang II) in obese individuals is known to be upregulated in obesity-induced hypertension, direct evidence that explains the underlying mechanism for increased vascular tone and consequent increase in blood pressure (BP) is largely unknown. The purpose of this study is to investigate the novel mechanism underlying Ang II-induced hyper-contractility and hypertension in obese rats. Eight-week old male Sprague-Dawley rats were fed with 60% fat diet or normal diet for 4 months. Body weight, plasma lipid profile, plasma Ang II level, BP, Ang II-induced vascular contraction, and expression of regulatory proteins modulating vascular contraction with/without Ang II stimulation were measured. As a result, high fat diet (HFD) accelerated age-dependent body weight gaining along with increased plasma Ang II concentration. It also increased BP and Ang II-induced aortic contraction. Basal expression of p-CPI-17 and myosin light chain (MLC) kinase was increased by HFD along with increased phosphorylation of MLC. Ang II-induced phosphorylation of CPI-17 and MLC were also higher in HFD group than control group. In conclusion HFD-induced hypertension is through at least in part by increased vascular contractility via increased expression and activation of contractile proteins and subsequent MLC phosphorylation induced by increased Ang II.
Angiotensin II*
;
Angiotensins*
;
Animals
;
Blood Pressure
;
Body Weight
;
Contractile Proteins
;
Diet
;
Diet, High-Fat*
;
Humans
;
Hypertension
;
Male
;
Myosin Light Chains
;
Obesity
;
Phosphorylation
;
Phosphotransferases
;
Plasma
;
Rats
;
Rats, Sprague-Dawley
;
Risk Factors
;
Up-Regulation*

Result Analysis
Print
Save
E-mail