1.Effect of sodium tanshinone II (A) sulfonate on Ang II -induced atrial fibroblast collagen synthesis and TGF-beta1 activation.
Le YANG ; Xiao-Jing ZOU ; Zhao YIN ; Hong-Zhen HAO
China Journal of Chinese Materia Medica 2014;39(6):1093-1096
OBJECTIVETo observe the effect of sodium tanshinone II (A) sulfonate (STS) on Ang II -induced atrial fibroblast collagen synthesis and TGF-beta1 activation.
METHODAtrial fibroblasts of neonatal rats were cultured to determine the content of collagen protein. The original synthesis rate determined by the [3H]-proline incorporation method was taken as the index for myocardial fibrosis. The content of active TGF-beta1 and total TGF-beta1 in cell culture supernatants were tested and cultured by ELISA. The expression of thrombospondin-1 (TSP-1) was assessed by using Western blot.
RESULTAng II could significantly increase the content of atrial fibroblast collagen and the collagen synthesis rate, the TSP-1 expression and the concentration of active TGF-beta1, without any obvious change in total TGF-beta1. After the STS treatment, all of the indexes, apart from total TGF-beta1, were obviously down-regulated.
CONCLUSIONSTS could decrease the secretion of Ang II -induced atrial fibroblast collagen and the synthesis rate. Its mechanism is related to the inhibition of TSP-1/TGF-beta1 pathway.
Angiotensin II ; pharmacology ; Animals ; Collagen ; biosynthesis ; Fibroblasts ; cytology ; drug effects ; metabolism ; Gene Expression Regulation ; drug effects ; Heart Atria ; cytology ; Phenanthrenes ; pharmacology ; Rats ; Rats, Wistar ; Signal Transduction ; drug effects ; Thrombospondin 1 ; metabolism ; Transforming Growth Factor beta1 ; metabolism
2.Calreticulin-induced mitochondrial injury: a novel mechanism of cardiac hypertrophy.
Hu SHAN ; Jin WEI ; Ming ZHANG ; Rui YAN ; Lin LIN ; Rong ZHANG ; Yanhe ZHU ; Wuhong TAN
Journal of Southern Medical University 2014;34(9):1248-1253
OBJECTIVETo observe the effect of angiotensin II (Ang II) on calreticulin (CRT) expression and its association with mitochondrial dysfunction in cardiomyocytes.
METHODSPrimary neonatal rat cardiomyocytes were randomly divided into CRT siRNA group, control siRNA group, control group, Ang II+ CRT siRNA group, Ang II+ control siRNA group and Ang II group. The cell surface area, protein synthesis rate, mitochondrial membrane potential level, enzyme activities, and CRT expression were observed.
RESULTSCompared with those in the control group, the cell surface area and protein synthesis rate were both increased and mitochondrial membrane potential level and enzyme activities decreased in Ang II groups. CRT expression was significantly down-regulated in Ang II+ CRT siRNA group with increased cell surface area, protein synthesis rate, mitochondrial membrane potential level and enzyme activities as compared with those in Ang II+ control siRNA group.
CONCLUSIONAng II up-regulates CRT expression to induce mitochondrial injury, which may be an important mechanism of myocardial hypertrophy.
Angiotensin II ; pharmacology ; Animals ; Calreticulin ; metabolism ; Cardiomegaly ; Cells, Cultured ; Membrane Potential, Mitochondrial ; Mitochondria ; pathology ; Myocytes, Cardiac ; pathology ; Protein Biosynthesis ; RNA, Small Interfering ; Rats
3.Effects of Ac-SDKP on angiotensin II-induced collagen synthesis in vascular adventitial fibroblasts.
Ting WANG ; Xiang-Quan KONG ; Wei-Hua WANG
Chinese Journal of Applied Physiology 2013;29(2):179-192
OBJECTIVETo investigate the effect of an anti-fibrotic tetra peptide Ac-SDKP on vascular fibrosis by regulating extracellular regulated protein kinase (ERK1/2) activity through Ang II.
METHODSRat vascular adventitial fibroblasts were cultured in vitro. They were randomly divided into control group, Ang II (10(-6) mmol/L) group, Ang II and Ac-SDKP joint action group, PD98059 group. Type I, III collagen contents in adventitia fibroblasts were measured by RT-PCR and the expressions of matrix metalloproteinases (MMP-2) and transforming growth factor-beta1 (TGF-beta1) were determined by Western blot.
RESULTSAc-SDKP could reduced Ang II-induced expression of type I, III collagen secretion and TGF-beta1 at mRNA,and increase MMP-2 expression, PD98059 could inhibit the above effect.
CONCLUSIONThe results suggested that Ac-SDKP could inhibit the formation and development of vascular fibrosis through blocking ERK1/2 pathway mediated by Ang II. Ac-SDKP therefore served as an antifibrotic factor in vascular fibrosis.
Angiotensin II ; adverse effects ; Animals ; Cells, Cultured ; Collagen Type I ; biosynthesis ; Collagen Type III ; biosynthesis ; Fibroblasts ; cytology ; drug effects ; metabolism ; Flavonoids ; pharmacology ; MAP Kinase Signaling System ; Male ; Matrix Metalloproteinase 2 ; metabolism ; Oligopeptides ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Transforming Growth Factor beta1 ; metabolism
4.Effects of agonists of PPAR-gamma on angiotensin II-induced proliferation and extracellular matrix synthesis in hypertrophic scar fibroblasts.
Kang LIN ; Lei LÜ ; Wei-Yang GAO ; Zhi-Ling HE ; Guo-You ZHANG
Chinese Journal of Plastic Surgery 2013;29(2):121-125
OBJECTIVETo study the effects of peroxisome proliferator-activated receptor gamma agonists on angiotensin II-induced cellular response in cultured fibroblasts derived from patients with hypertrophic scars, so as to investigate its effects on preventing the formation of hypertrophic scars.
METHODSFibroblasts were freshly isolated from hypertrophic scars and cultured with angiotensin II, rosiglitazone and GW9662 at a certain concentration. Fibroblasts proliferation were assessed via Cell Counting Kit-8; the mRNA and protein expressions of Collagen I and Fibronectin (FN) were determined by quantitative real-time RT-PCR and Western blotting.
RESULTSThe absorbance of CCK-8 and relative expression of Collagen I, FN mRNA and protein were 1.082 5 +/- 0.007, 6.45 +/- 0.97, 4.92 +/- 0.86, 2.92 +/- 0.41, 2.78 +/- 1.04 in Ang II group; 0.722 4 +/- 0.012, 1.82 +/- 0.34, 1.78 +/- 0.27, 1.57 +/- 0.46, 1.68 +/- 0.39 in Ros + Ang II group; 0.554 7 +/- 0.012, 0.97 +/- 0.12, 1.07 +/- 1.08, 1.05 +/- 0.43, 1.14 +/- 0.36 in Ros group; 1.056 0 +/- 0.005, 5.83 +/- 0.24, 4.47 +/- 0.32, 2.69 +/- 0.35, 2.62 +/- 0.27 in GW9662 + ros + Ang II group. The results showed a significant difference between the Ang II group and the control group (P < 0.05). The effect of Ang II could be markedly inhibited by Ros (P < 0.05). In addition, Ros did not influence cell proliferation and production of extracellular matrix (P > 0.05). There was a significant difference between the GW9662 + Ros + Ang II group and the Ros + Ang II (P < 0.05).
CONCLUSIONSPPAR-gamma agonists inhibit Ang II-induced proliferation and extracellular matrix synthesis effectively in the hypertrophic scar fibroblasts. Thus PPAR-gamma agonists may have potential therapeutic effect for hypertrophic scar.
Angiotensin II ; pharmacology ; Cell Proliferation ; drug effects ; Cells, Cultured ; Cicatrix, Hypertrophic ; metabolism ; Collagen Type I ; biosynthesis ; Extracellular Matrix ; drug effects ; Fibroblasts ; drug effects ; metabolism ; pathology ; Fibronectins ; biosynthesis ; Humans ; PPAR gamma ; agonists
5.Effect of chronic intermittent hypobaric hypoxia on contractile activity of arteries in rats.
Shi-Jun SONG ; Ying XU ; Fang-Fang LI ; Fang YUAN ; Zhao-Nian ZHOU ; Yi ZHANG
Acta Physiologica Sinica 2011;63(3):205-210
		                        		
		                        			
		                        			The present study is aimed to investigate the effect of chronic intermittent hypobaric hypoxia (CIHH) on contractile activities in isolated thoracic aorta and pulmonary artery rings and the underlying mechanism in rats. Sprague-Dawley (SD) rats were randomly divided into 4 groups: control group (CON), 14 days CIHH treatment group (CIHH14), 28 days CIHH treatment group (CIHH28) and 42 days CIHH treatment group (CIHH42). CIHH rats were exposed to hypoxia in a hypobaric chamber simulating 5 000 m altitude, 6 h daily for 14, 28 and 42 d, respectively. After artery rings were prepared from pulmonary artery and thoracic aorta, the contractile activity of the artery rings was recorded using organ bath technique. Results are shown as follows. (1) There were no significant differences of noradrenaline (NA)- and KCl-induced contractions in thoracic aorta and pulmonary artery rings among CIHH and CON rats. (2) Angiotensin Ⅱ (ANGⅡ)-induced contraction in thoracic aorta rings, not in pulmonary artery rings, of CIHH rats was decreased compared with that in CON rats. There was no significant difference of ANGⅡ-induced contraction in thoracic aorta rings among CIHH rats. (3) Inhibitory effect of CIHH on ANGⅡ-induced contraction in thoracic aorta rings was endothelium-independent, and was reversed by glibenclamide (Gli), an ATP-sensitive potassium channels (K(ATP)) blocker, and L-NAME, a NO synthase inhibitor, but not by indomethacin (Indo), a cyclooxygenase inhibitor. These results suggest that CIHH attenuates the contraction induced by ANGⅡ in thoracic aorta rings of rat, which is related to the opening of K(ATP) channel and the increased production of NO.
		                        		
		                        		
		                        		
		                        			Angiotensin II
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Aorta, Thoracic
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Hypoxia
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			KATP Channels
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Muscle Contraction
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Muscle, Smooth, Vascular
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Nitric Oxide
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			Pulmonary Artery
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Vasoconstriction
		                        			;
		                        		
		                        			physiology
		                        			
		                        		
		                        	
6.Effects of clearance of superoxide anion by catechin on the expression of NO and eNOS and apoptosis in endothelial progenitor cells induced by angiotensin II.
Li-Yuan WU ; Xi-Qiang DANG ; Xiao-Jie HE ; Zhu-Wen YI
Chinese Journal of Contemporary Pediatrics 2009;11(6):476-480
OBJECTIVETo evaluate the effect of clearance of superoxide anion by catechin on the expression of nitrogen monoxidum (NO) and endothelial nitricoxide synthase (eNOS) and apoptosis in endothelial progenitor cells (EPCs) induced by angiotensin II (Ang II).
METHODSThe marrow endothelial progenitor cells of Sprague-Dawley rats were isolated and assigned to control (no treatment), Ang II treatment and Ang II + catechin treatment groups. After 48 hrs of culture, the concentration of O2*- in the supernate was measured by the NBT method, and NO concentration in the supernate was measured by the nitrate reductase method; the apoptosis rate of EPCs was detected by the TUNEL method; the mRNA expression of eNOS was detected by RT-PCR; the protein expression of eNOS was detected by Western blot analysis.
RESULTSAng II of 10-6 mol/L was determined as the suitable concentration for cell induction by the MTT test. Catechin of 400 mg/L was determined as an advisable intervention dosage. The apoptosis rate of EPCs in the control, the Ang II and the Ang II+catechin treatment groups were 2.48+/-0.12%, 54.18+/-0.77% and 16.87+/-0.35%, respectively, and there were significant differences among the three groups (P<0.01). The O2*- concentration in the Ang II and the Ang II+catechin treatment groups (81.7+/- 3.6 and 62.3+/- 2.2 U/L respectively) was significantly higher than that in the control group (33.7+/- 2.8 U/L) (P<0.01). An increased NO concentration was also found in the Ang II (189. 8+/- 9.0 micromol/L) and the Ang II+catechin treatment groups (276.4+/- 10.1 micromol/L) compared with that in the control group (105.8+/- 9.8 micromol/L) (P<0.01). There were significant differences in the concentrations of O2*- and NO between the Ang II and the Ang II+catechin treatment groups (P<0.05). The mRNA (P<0.05) and protein expression (P<0.01) of eNOS in the Ang II and the Ang II+catechin treatment groups increased significantly compared with those in the control group. The Ang II+catechin treatment group showed increased eNOS protein expression compared with the Ang II group (P<0.05).
CONCLUSIONSAng II may induce the generation of O2*-, inactivate NO and increase gene and protein expression of eNOS in EPCs. Catechin might decrease the apoptosis of EPCs through the effective clearance of O2*-and the reduction of NO inactivation and of eNOS protein uncoupling.
Angiotensin II ; pharmacology ; Animals ; Apoptosis ; drug effects ; Catechin ; pharmacology ; Cell Survival ; drug effects ; Endothelial Cells ; drug effects ; metabolism ; Female ; Nitric Oxide ; biosynthesis ; Nitric Oxide Synthase Type III ; analysis ; genetics ; RNA, Messenger ; analysis ; Rats ; Rats, Sprague-Dawley ; Stem Cells ; drug effects ; metabolism ; Superoxides ; metabolism
7.Expression, purification and polyclonal antibody preparation for a novel gene BC097361.
Qi WANG ; Yun-lei LIANG ; Hong-shan WEI ; Hui-chun XING ; Jun CHENG ; Meng-dong LAN ; Bin ZHANG
Chinese Journal of Hepatology 2009;17(8):589-593
OBJECTIVETo express and purify of the BC097361 recombinant protein, and to prepare the BC097361 specific rabbit polyclonal antibody.
METHODSBC097361 cDNA was ligated into the prokaryotic expressive vector pET-32a (+), and the resulting plasmid was transformed into E.coli BL21 (DE3). The protein expression was induced with IPTG and the protein was analyzed with SDS-PAGE and western blotting. The expressed product was purified using Ni+ affinity column chromatography.Then the purified pET-32a (+) -BC097361 fusion protein was used to immunize New Zealand rabbits to gain polyclonal antibody. The specificity and potency of polyclonal antibody were evaluated by Western blot and ELISA.
RESULTSThe BC097361 fusion protein was highly expressed.The protein was mainly in the inclusion body. ELISA indicated the titer of polyclonal antibody more than 1:320000. The high specificity was confirmed with Western blot.
CONCLUSIONSThe recombinant BC097361 fusion protein and the BC097361 specific polyclonal antibody will be valuable tools for the investigation on the biological function of BC097361.
Angiotensin II ; genetics ; Animals ; Antibodies ; immunology ; isolation & purification ; metabolism ; Antibody Specificity ; Blotting, Western ; Cloning, Molecular ; Escherichia coli ; genetics ; metabolism ; Gene Expression ; Genetic Vectors ; genetics ; Liver Cirrhosis ; genetics ; Male ; Plasmids ; genetics ; Rabbits ; Recombinant Fusion Proteins ; biosynthesis ; immunology ; Reverse Transcriptase Polymerase Chain Reaction
8.NaCl plus chitosan as a dietary salt to prevent the development of hypertension in spontaneously hypertensive rats.
Sung Hoon PARK ; Noton Kumar DUTTA ; Min Won BAEK ; Dong Jae KIM ; Yi Rang NA ; Seung Hyeok SEOK ; Byoung Hee LEE ; Ji Eun CHO ; Geon Sik CHO ; Jae Hak PARK
Journal of Veterinary Science 2009;10(2):141-146
		                        		
		                        			
		                        			The effect of NaCl plus 3% chitosan on the systolic blood pressure of spontaneously hypertensive rats (SHR) were evaluated and compared with NaCl plus KCl (NaCl, 49.36% + KCl 49.36%) and chitosan or NaCl treatment alone. In SHR, administration of NaCl plus chitosan (44 mM Na/day) for two months significantly decreased the systolic blood pressure greater than of NaCl plus KCl and NaCl alone. NaCl plus chitosan resulted, though not statistically significant, in decreased urinary Na+ excretion and decreased blood urea nitrogen levels. Urinary creatinine of NaCl plus chitosan was slightly decreased compared to 3 treated groups. Serum electrolytes levels, however, remained unchanged. The combination of NaCl and chitosan may be superior to the conventional use of NaCl plus KCl or NaCl alone in the prevention of hypertension. Even though these supplementary diets have demonstrated potential anti-hypertensive effects in the experimental animal model, further research is needed before any recommendations can be made.
		                        		
		                        		
		                        		
		                        			Angiotensin I/blood
		                        			;
		                        		
		                        			Angiotensin II/biosynthesis
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Blood Pressure/*drug effects/physiology
		                        			;
		                        		
		                        			Blood Urea Nitrogen
		                        			;
		                        		
		                        			Body Weight/drug effects
		                        			;
		                        		
		                        			Chitosan/*administration & dosage
		                        			;
		                        		
		                        			Chlorides/blood/urine
		                        			;
		                        		
		                        			Creatinine/urine
		                        			;
		                        		
		                        			Heart/physiology
		                        			;
		                        		
		                        			Histocytochemistry
		                        			;
		                        		
		                        			Hypertension/*prevention & control
		                        			;
		                        		
		                        			Kidney/physiology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Potassium/blood/urine
		                        			;
		                        		
		                        			Potassium Chloride/administration & dosage
		                        			;
		                        		
		                        			Random Allocation
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Inbred SHR
		                        			;
		                        		
		                        			Sodium/blood/urine
		                        			;
		                        		
		                        			Sodium Chloride, Dietary/*administration & dosage
		                        			;
		                        		
		                        			Systole/drug effects/physiology
		                        			
		                        		
		                        	
9.Effect of AP-1 decoy oligodeoxynucleotides on neonatal rat cardiac fibroblast proliferation and collagen synthesis.
Shuang-lun XIE ; Jing-feng WANG ; Ru-qiong NIE ; Wo-liang YUAN ; Fei LI ; Mao-huan LIN
Journal of Southern Medical University 2008;28(5):811-814
OBJECTIVETo investigate the inhibitory effects of AP-1 decoy oligodeoxynucleotides (ODNs) on angiotensin II (AngII)-induced proliferation and collagen synthesis in neonatal rat cardiac fibroblasts (CFs).
METHODSThe CFs of neonatal SD rats were cultured in serum-free medium for 24 h and stimulated with 10(-7) mol/L AngII in the presence of AP-1 decoy ODNs or mutational AP-1 decoy ODNs at varied concentrations. MTT assay was employed for quantitative evaluation of the CF proliferation. Collagen synthesis in the CFs was assessed with hydroxyproline, and the cell cycle distribution determined with flow cytometry (FCM).
RESULTSWith the increase of the concentration of AP-1 decoy ODNs, the absorbance at 490 nm (OD490) of the CFs decreased gradually as shown by MTT assay. Treatment with 100 or 200 nmol/L AP-1 decoy ODNs resulted in significantly lowered OD490 of the CFs as compared with that of AngII group. The concentration of hydroxyproline increased significantly after treatment with 10(-7) mol/L AngII in comparison with the control group (P<0.05). Hydroxyproline concentration in cells treated with 100 or 200 nmol/L AP-1 decoy ODNs was significantly lower than that in the 10(-7) mol/L AngII-treated cells. AP-1 decoy ODNs decreased the cell percentage in S phase and increased hydroxyproline concentration, but increased the percentage of cells in G0/G1 phase. AP-1 decoy ODNs at 100 and 200 nmol/L did not obviously affect AngII-induced CF proliferation and collagen synthesis (P<0.01).
CONCLUSIONAP-1 decoy can inhibit AngII-induced rat CF proliferation and collagen synthesis possibly by affecting the cell cycle distribution.
Angiotensin II ; pharmacology ; Animals ; Animals, Newborn ; Cell Cycle ; drug effects ; Cell Proliferation ; drug effects ; Cell Survival ; drug effects ; Cells, Cultured ; Collagen ; biosynthesis ; Dose-Response Relationship, Drug ; Fibroblasts ; cytology ; drug effects ; metabolism ; Flow Cytometry ; Mutation ; Myocardium ; cytology ; metabolism ; Oligodeoxyribonucleotides ; genetics ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Transcription Factor AP-1 ; genetics
10.Effects of chronic salt loading on blood pressure and arterial chloride channel expression in rats with a two-week-long angiotensin II exposure.
Yuan FANG ; Zhi-Quan LIU ; Yong ZHENG
Journal of Southern Medical University 2008;28(1):7-11
OBJECTIVETo investigate the effects of salt loading on blood pressure and the expression of arterial chloride channel in rats with elevated blood pressure induced by angiotensin II (AngII).
METHODSMale 12-week-old SD rats were randomly divided into AngII and control groups, and in the former group, the rats were exposed to subcutaneous AngII infusion delivered via a drug pump (at 100 ng. kg(-1). min(-1)) for 2 weeks. After the exposure, each group of the rats was further divided into 2 subgroups to receive a high-salt diet (4% NaCl) or normal salt diet (0.6% NaCl) for 12 weeks. The tail blood pressure and sodium metabolism of the rats were measured during the experiment. Since the commencement of salt loading, 6 rats were sacrificed every 4 weeks to obtain the artery samples, in which mCLCA(4) mRNA expression in the arterial smooth muscles was detected by in situ hybridization using mCLCA(4) oligonuclear probe.
RESULTSThe blood pressure of rats in AngII group was significantly higher than that of the control rats (P<0.05), but AngII did not produce significant effects on the expression of mCLCA(4). mCLCA4 mRNA expression was significantly increased in the arterial smooth muscle cells of the rats in high salt groups as compared with those in normal salt groups (P<0.05).
CONCLUSIONA sub-pressor dose of AngII can result in blood pressure elevation, but the mechanism of which does not seem to involve mCLCA(4) expression. mCLCA(4) mRNA expression is up-regulated in normal SD rats after high salt feeding, but salt loading does not obviously affect blood pressure, suggesting the role of mCLCA(4) in antagonizing the pressure-elevating effect of salt loading.
Angiotensin II ; pharmacology ; Animals ; Blood Pressure ; drug effects ; Chloride Channels ; biosynthesis ; genetics ; In Situ Hybridization ; Male ; Muscle, Smooth, Vascular ; drug effects ; metabolism ; RNA, Messenger ; biosynthesis ; genetics ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Sodium Chloride, Dietary ; administration & dosage ; pharmacology
            
Result Analysis
Print
Save
E-mail