1.Research advance on structure and function of amides in Zanthoxylum plants.
Qian-Nv YE ; Xiao-Feng SHI ; Jun-Li YANG
China Journal of Chinese Materia Medica 2023;48(9):2406-2418
		                        		
		                        			
		                        			Zanthoxylum belongs to the Rutaceae family, and there are 81 Zanthoxylum species and 36 varieties in China. Most of the Zanthoxylum plants are used as culinary spice. In recent years, scholars in China and abroad have carried out in-depth research on Zanthoxylum plants, and found that the peculiar numbing sensation of Zanthoxylum plants originates from amides. It is also determined that amides are an important material basis for exerting pharmacological effects, especially in anti-inflammatory analgesia, anesthesia and other aspects. In this paper, 123 amides in 26 Zanthoxylum plants and their pharmacological activity that have been reported were summarized, which provided scientific reference for the clinical application of Zanthoxylum plants and the research and development of new drugs, and also facilitated the sustainable development and utilization of Zanthoxylum plant resources.
		                        		
		                        		
		                        		
		                        			Zanthoxylum/chemistry*
		                        			;
		                        		
		                        			Amides/chemistry*
		                        			;
		                        		
		                        			Plant Extracts/pharmacology*
		                        			;
		                        		
		                        			China
		                        			
		                        		
		                        	
2.Chemical components of Magnoliae Officinalis Cortex of different origins and with different tree ages before and after being processed with ginger juice:a qualitative and quantitative analysis.
Jia-Qi LI ; Zhen-Zhen XUE ; Bin YANG
China Journal of Chinese Materia Medica 2023;48(9):2435-2454
		                        		
		                        			
		                        			This study aimed to investigate the impact of ginger juice on chemical profile of Magnoliae Officinalis Cortex(MOC) when they were processed together. Ultra-high-performance liquid chromatography coupled to quadrupole-orbitrap high-resolution mass spectrometry(UHPLC-Q-Orbitrap HRMS) was used for qualitative analysis of the chemical component of MOC samples before and after being processed with ginger juice. UPLC was performed to observe the content variation of eight main components in processed MOC. A total of 174 compounds were identified or tentatively deduced from processed and unprocessed MOC samples according to MS data obtained in positive and negative ion mode. After MOC was processed with ginger juice, the peak areas of most phenolics increased, while the peak areas of most phenylethanoid glycosides decreased; as for neolignans, oxyneolignans, other lignans and alkaloids, changes in the peak area were variable, and the peak areas of terpenoid-lignans varied little. Additionally, gingerols and diarylheptanoids were only detected in the processed MOC sample. The contents of syringin, magnoloside A, and magnoloside B decreased significantly in the processed MOC sample while no significant difference was observed in the contents of magnoflorine, magnocurarine, honokiol, obovatol, and magnolol. This study comprehensively explored the content variation of chemical components in processed and unprocessed MOC samples derived from different regions and with different tree ages using UPLC and UHPLC-Q-Orbitrap HRMS, and summarized the variation characteristics of various compounds. The results provide a data foundation for further research on pharmacodynamic substances of MOC processed with ginger juice.
		                        		
		                        		
		                        		
		                        			Ginger
		                        			;
		                        		
		                        			Trees
		                        			;
		                        		
		                        			Chromatography, High Pressure Liquid/methods*
		                        			;
		                        		
		                        			Alkaloids
		                        			;
		                        		
		                        			Lignans/analysis*
		                        			
		                        		
		                        	
3.Properties of new exotic traditional Chinese medicinal Vernonia amygdalina leaves:a literature research.
Zi-Heng WANG ; Xiao-Jun ZHAO ; Xun CHEN ; Wen-Ting FEI ; Chun WANG ; Jian-Jun ZHANG ; Lin-Yuan WANG
China Journal of Chinese Materia Medica 2023;48(8):2265-2271
		                        		
		                        			
		                        			The leaves of Vernonia amygdalina Delile of the family Asteraceae(also known as "bitter leaf"), rich in biological activities, are used as both medicine and food for a long time in West tropical Africa. They have been introduced into Southeast Asia and Fujian and Guangdong provinces of China in recent years. However, little is known about the properties of the plant in traditional Chinese medicine(TCM), which limits its combination with other Chinese medicinal herbs. In this study, 473 articles on V. amygdalina leaves were selected from PubMed, Web of Science, CNKI, Wanfang Data and VIP to summarize their components, pharmacological effects and clinical research. V. amygdalina leaves presented anti-microbial, hypoglycemic, anti-hypertensive, lipid-lowering, anti-tumor, anti-inflammatory, antioxidant, and other pharmacological effects. On the basis of the theory of TCM properties, the leaves were inferred to be cold in property and bitter and sweet in flavor, acting on spleen, liver, stomach and large intestine and with the functions of clearing heat, drying dampness, purging fire, removing toxin, killing insects and preventing attack of malaria. They can be used to treat dampness-heat diarrhea, interior heat and diabetes, malaria, insect accumulation and eczema(5-10 g dry leaves by decoction per day and an appropriate amount of crushed fresh leaves applying to the affected area for external use). Due to the lack of TCM properties, V. amygdalina leaves are rarely used medicinally in China. The determination of medicinal properties of the leaves is conducive to the introduction of new exotic medicinal herbs and the development of new TCM resources, which facilitated further clinical application and research and development of Chinese medicinal herbs.
		                        		
		                        		
		                        		
		                        			Antioxidants
		                        			;
		                        		
		                        			Medicine, Chinese Traditional
		                        			;
		                        		
		                        			Plant Extracts/pharmacology*
		                        			;
		                        		
		                        			Plant Leaves
		                        			;
		                        		
		                        			Plants, Medicinal
		                        			;
		                        		
		                        			Vernonia
		                        			
		                        		
		                        	
4.Processing Magnoliae Officinalis Cortex with ginger juice: process optimization based on AHP-CRITIC weighting method and composition changes after processing.
Yu-Fang QI ; Xing-Chen FAN ; Si-Chen WANG ; Yu-An SU ; Ke-Wei ZHANG ; Chun-Qin MAO ; Tu-Lin LU
China Journal of Chinese Materia Medica 2023;48(14):3806-3814
		                        		
		                        			
		                        			The weight coefficients of appearance traits, extract yield of standard decoction, and total content of honokiol and magnolol were determined by analytic hierarchy process(AHP), criteria importance though intercrieria correlation(CRITIC), and AHP-CRITIC weighting method, and the comprehensive scores were calculated. The effects of ginger juice dosage, moistening time, proces-sing temperature, and processing time on the quality of Magnoliae Officinalis Cortex(MOC) were investigated, and Box-Behnken design was employed to optimize the process parameters. To reveal the processing mechanism, MOC, ginger juice-processed Magnoliae Officinalis Cortex(GMOC), and water-processed Magnoliae Officinalis Cortex(WMOC) were compared. The results showed that the weight coefficients of the appearance traits, extract yield of standard decoction, and total content of honokiol and magnolol determined by AHP-CRITIC weighting method were 0.134, 0.287, and 0.579, respectively. The optimal processing parameters of GMOC were ginger juice dosage of 8%, moistening time of 120 min, and processing at 100 ℃ for 7 min. The content of syringoside and magnolflorine in MOC decreased after processing, and the content of honokiol and magnolol followed the trend of GMOC>MOC>WMOC, which suggested that the change in clinical efficacy of MOC after processing was associated with the changes of chemical composition. The optimized processing technology is stable and feasible and provides references for the modern production and processing of MOC.
		                        		
		                        		
		                        		
		                        			Ginger
		                        			;
		                        		
		                        			Magnolia/chemistry*
		                        			;
		                        		
		                        			Drugs, Chinese Herbal/chemistry*
		                        			;
		                        		
		                        			Biphenyl Compounds/chemistry*
		                        			;
		                        		
		                        			Lignans/chemistry*
		                        			
		                        		
		                        	
5.Kiwi fruit essence reduces radiation-induced lung injury by down-regulating TNF-α and PDGF-B in rats.
Lijing LIU ; Hong QIAN ; Liyang HE ; Wenjie WEI ; Meiling ZHOU ; Jianbin HE
Chinese Journal of Cellular and Molecular Immunology 2023;39(4):332-338
		                        		
		                        			
		                        			Objective To observe the role of tumor necrosis factor-α (TNF-α) and platelet-derived growth factor-B (PDGF-B) in kiwi fruit essence-mediated protection of radiation-induced lung injury (RILI) in rats. Methods 96 male healthy Sprague-Dawley rats were divided into normal control group, model group, and kiwi fruit essence treatment group(60 and 240 mg/kg) by the random number table method, with 24 animals in each group. The whole lungs underwent 6 MV X-ray irradiation (18 Gy) to induce RILI animal models in rats of the latter three groups. On the next day after irradiation, rats in the latter two groups were intragastrically administrated with 60 or 240 mg/kg kiwi fruit essence, once a day. The rats in the normal control and model groups were treated with 9 g/L sodium chloride solution. Eight rats in the latter three groups were randomly sacrificed on days 14, 28, and 56, while normal control rats were sacrificed on day 56 as the overall control. Blood samples were collected and separated. Serum concentrations of TNF-α and PDGF-B were detected using ELISA. The lung tissues were isolated for HE and Masson staining to evaluate alveolitis and pulmonary fibrosis (PF). The hydroxyproline (HYP) content in lung tissues was detected. The mRNA and protein expression of pulmonary TNF-α and PDGF-B were determined by quantitative real-time PCR and immunohistochemistry. Results Compared with the model group, treatment with 60 and 240 mg/kg kiwi fruit essence group significantly reduced alveolitis on days 14 and 28 as well as PF lesions on days 28 and 56. Compared with the normal control group, HYP content in the lung tissue of the model group increased on day 28 and day 56, while TNF-α and PDGF-B levels in the serum and lung tissues increased at each time point. Compared with the model group during the same period, 60 and 240 mg/kg kiwi fruit essence element treatment group reported the diminished levels of serum and pulmonary TNF-α on day 14 and day 28. Consistently, the lung tissue HYP content and serum and pulmonary PDGF-B levels on day 28 and day 56 were reduced. In addition, the above indicators in the 240 mg/kg kiwi fruit essence treatment group were lower than those for the 60 mg/kg kiwi fruit essence treatment group. Conclusion Kiwi fruit essence can alleviate RILI in rats, which is related to the down-regulation of TNF-α expression at the early stage and decreased PDGF-B level at the middle and late stages.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Fruit/metabolism*
		                        			;
		                        		
		                        			Lung/radiation effects*
		                        			;
		                        		
		                        			Lung Injury/prevention & control*
		                        			;
		                        		
		                        			Oils, Volatile
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-sis/metabolism*
		                        			;
		                        		
		                        			Pulmonary Fibrosis
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Actinidia/chemistry*
		                        			
		                        		
		                        	
6.UPLC-Q-TOF-MS metabolomic study on improvement of acute myocardial ischemia in rats by Dalbergia cochinchinensis heartwood.
Wen-Long WANG ; An LI ; Lan-Ying CHEN ; Jia-Rong LI ; Ya-Ru CUI ; Ni ZHANG ; Ying-Ying LUO ; Rong-Hua LIU ; Can-Yue OUYANG ; Bei-Xin YUAN ; Ying ZHANG ; Peng-Hao-Bang LIU
China Journal of Chinese Materia Medica 2023;48(4):1043-1053
		                        		
		                        			
		                        			This paper aimed to study the effect of Dalbergia cochinchinensis heartwood on plasma endogenous metabolites in rats with ligation of the left anterior descending coronary artery, and to analyze the mechanism of D. cochinchinensis heartwood in improving acute myocardial ischemic injury. The stability and consistency of the components in the D. cochinchinensis heartwood were verified by the establishment of fingerprint, and 30 male SD rats were randomly divided into a sham group, a model group, and a D. cochinchinensis heartwood(6 g·kg~(-1)) group, with 10 rats in each group. The sham group only opened the chest without ligation, while the other groups established the model of ligation. Ten days after administration, the hearts were taken for hematoxylin-eosin(HE) staining, and the content of heart injury indexes in the plasma creatine kinase isoenzyme(CK-MB) and lactate dehydrogenase(LDH), energy metabolism-related index glucose(Glu) content, and vascular endothelial function index nitric oxide(NO) was determined. The endogenous metabolites were detected by ultra-high-performance liquid chromatography-time-of-flight-mass spectrometry(UPLC-Q-TOF-MS). The results showed that the D. cochinchinensis heartwood reduced the content of CK-MB and LDH in the plasma of rats to relieve myocardial injury, reduced the content of Glu in the plasma, improved myocardial energy metabolism, increased the content of NO, cured the vascular endothelial injury, and promoted vasodilation. D. cochinchinensis heartwood improved the increase of intercellular space, myocardial inflammatory cell infiltration, and myofilament rupture caused by ligation of the left anterior descending coronary artery. The metabolomic study showed that the content of 26 metabolites in the plasma of rats in the model group increased significantly, while the content of 27 metabolites decreased significantly. Twenty metabolites were significantly adjusted after the administration of D. cochinchinensis heartwood. D. cochinchinensis heartwood can significantly adjust the metabolic abnormality in rats with ligation of the left anterior descending coronary artery, and its mechanism may be related to the regulation of cardiac energy metabolism, NO production, and inflammation. The results provide a corresponding basis for further explaining the effect of D. cochinchinensis on the acute myocardial injury.
		                        		
		                        		
		                        		
		                        			Male
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Dalbergia
		                        			;
		                        		
		                        			Myocardial Ischemia
		                        			;
		                        		
		                        			Metabolomics
		                        			;
		                        		
		                        			Heart
		                        			;
		                        		
		                        			Heart Injuries
		                        			;
		                        		
		                        			Creatine Kinase, MB Form
		                        			
		                        		
		                        	
7.Melanogenesis of quality markers in Vernonia anthelmintica Injection based on UPLC-Q-TOF-MS combined network pharmacology.
Lin LUO ; Yan-Yuan ZHANG ; Cheng WANG ; Si-Lu HUANG ; Xiao-Qin WANG ; Bo ZHANG
China Journal of Chinese Materia Medica 2023;48(6):1606-1619
		                        		
		                        			
		                        			This study aimed to evaluate the biological effect and mechanism of Vernonia anthelmintica Injection(VAI) on melanin accumulation. The in vivo depigmentation model was induced by propylthiouracil(PTU) in zebrafish, and the effect of VAI on melanin accumulation was evaluated based on the in vitro B16F10 cell model. The chemical composition of VAI was identified according to the high-performance liquid chromatography quadrupole-time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS). Network pharmaco-logy was applied to predict potential targets and pathways of VAI. A "VAI component-target-pathway" network was established, and the pharmacodynamic molecules were screened out based on the topological characteristics of the network. The binding of active molecules to key targets was verified by molecular docking. The results showed that VAI promoted tyrosinase activity and melanin production in B16F10 cells in a dose-and time-dependent manner and could restore the melanin in the body of the zebrafish model. Fifty-six compounds were identified from VAI, including flavonoids(15/56), terpenoids(10/56), phenolic acids(9/56), fatty acids(9/56), steroids(6/56), and others(7/56). Network pharmacological analysis screened four potential quality markers, including apigenin, chrysoeriol, syringaresinol, and butein, involving 61 targets and 65 pathways, and molecular docking verified their binding to TYR, NFE2L2, CASP3, MAPK1, MAPK8, and MAPK14. It was found that the mRNA expression of MITF, TYR, TYRP1, and DCT in B16F10 cells was promoted. By UPLC-Q-TOF-MS and network pharmacology, this study determined the material basis of VAI against vitiligo, screened apigenin, chrysoeriol, syringaresinol, and butein as the quality markers of VAI, and verified the efficacy and internal mechanism of melanogenesis, providing a basis for quality control and further clinical research.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Vernonia/chemistry*
		                        			;
		                        		
		                        			Melanins/metabolism*
		                        			;
		                        		
		                        			Zebrafish/metabolism*
		                        			;
		                        		
		                        			Network Pharmacology
		                        			;
		                        		
		                        			Molecular Docking Simulation
		                        			;
		                        		
		                        			Apigenin/pharmacology*
		                        			;
		                        		
		                        			Drugs, Chinese Herbal/pharmacology*
		                        			;
		                        		
		                        			Chromatography, High Pressure Liquid
		                        			
		                        		
		                        	
8.Chemical constituents from stems and leaves of Cratoxylum cochinchinense and their inhibitory effects on proliferation of synoviocytes in vitro.
Yong ZHANG ; Ni-Fei SHI ; Zhen XIE ; Yi-Meng ZHAO ; Cai-Huan LIANG ; Ya-Yuan DENG ; Ran WANG ; Yan-Ping LIU ; Yan-Hui FU
China Journal of Chinese Materia Medica 2023;48(18):5014-5023
		                        		
		                        			
		                        			The chemical constituents from the stems and leaves of Cratoxylum cochinchinense were isolated and purified using silica gel, ODS gel, and Sephadex LH-20 gel column chromatography, as well as preparative HPLC. The chemical structures of all isolated compounds were identified on the basis of their physicochemical properties, spectroscopic analyses, and the comparison of their physicochemical and spectroscopic data with the reported data in literature. As a result, 21 compounds were isolated from the 90% ethanol extract of the stems and leaves of C. cochinchinense, which were identified as cratocochine(1), 1-hydroxy-3,7-dimethoxyxanthone(2), 1-hydroxy-5,6,7-trimethoxyxanthone(3), ferrxanthone(4), 3,6-dihydroxy-1,5-dimethoxyxanthone(5), 3,6-dihydroxy-1,7-dimethoxyxanthone(6), 1,2,5-trihydroxy-6,8-dimethoxyxanthone(7), securixanthone G(8), gentisein(9), 3,7-dihydroxy-1-methoxyxanthone(10), pancixanthone B(11), garcimangosxanthone A(12), pruniflorone L(13), 9-hydroxy alabaxanthone(14), cochinchinone A(15), luteolin(16), 3,5'-dimethoxy-4',7-epoxy-8,3'-neolignane-5,9,9'-triol(17), N-benzyl-9-oxo-10E,12E-octadecadienamide(18), 15-hydroxy-7,13E-labdadiene(19), stigmasta-4,22-dien-3-one(20), and stigmast-5-en-3β-ol(21). Among these isolates, compound 1 was a new xanthone, compounds 2-5, 7, 8, 12, and 16-21 were isolated from the Cratoxylum plant for the first time, and compounds 11 and 13 were obtained from C. cochinchinense for the first time. Furthermore, all isolated compounds 1-21 were appraised for their anti-rheumatoid arthritis activities by MTS method through measuring their anti-proliferative effect on synoviocytes in vitro. As a result, xanthones 1-15 displayed notable anti-rheumatoid arthritis activities, which showed inhibitory effects on the proliferation of MH7A synoviocytes with the IC_(50) values ranging from(8.98±0.12) to(228.68±0.32) μmol·L~(-1).
		                        		
		                        		
		                        		
		                        			Synoviocytes
		                        			;
		                        		
		                        			Clusiaceae/chemistry*
		                        			;
		                        		
		                        			Xanthones/analysis*
		                        			;
		                        		
		                        			Plant Leaves/chemistry*
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Arthritis
		                        			
		                        		
		                        	
9.Rapid identification of stigmastane-type steroid saponins from Vernonia amygdalina leaf based on α-glucosidase inhibiting activity and molecular networking.
Juanjuan GAO ; Mengling ZHAO ; Shujun SHAN ; Yongyi LI ; Jun LUO ; Yi LI
Chinese Journal of Natural Medicines (English Ed.) 2022;20(11):846-853
		                        		
		                        			
		                        			Steroid saponins are secondary metabolites with multiple medicinal values that are found in large quantities in natural medicines, especially Vernonia amygdalina, a famous nature medicine for the treatment of tonsillitis, diabetes, pneumonia. The current study was designed to combine molecular networking (MN) with diagnostic ions for rapid identification of Δ7,9(11) stigmastane-type saponins which were the α-glucosidase inhibitory active substances in V. amygdalina. First, the α-glucosidase inhibitory activities of five Δ7,9(11) stigmastane-type steroid saponins that were previously isolated were screened, which indicated that the Δ7,9(11) stigmastane-type steroid saponin was one of the active constituents responsible for ameliorating diabetes. Furthermore, a strategy was proposed to identify stigmastane-type steroid saponins and verify the plausibility of derived fragmentation pathways by applying MN, MolNetEnhancer and unsupervised substructure annotation (MS2LDA). Based on this strategy, other seven Δ7,9(11) stigmastane-type steroid saponins were identified from this plant. Our research provide scientific evidence for the antidiabetic potential of the steroid saponin-rich extract of V. amygdalina leaf.
		                        		
		                        		
		                        		
		                        			alpha-Glucosidases/metabolism*
		                        			;
		                        		
		                        			Vernonia/chemistry*
		                        			;
		                        		
		                        			Plant Extracts/chemistry*
		                        			;
		                        		
		                        			Plant Leaves/chemistry*
		                        			;
		                        		
		                        			Saponins/chemistry*
		                        			;
		                        		
		                        			Steroids/chemistry*
		                        			;
		                        		
		                        			Diabetes Mellitus
		                        			
		                        		
		                        	
10.Determination of absolute configuration of a new triterpenic acid in leaves of Ilex hainanensis.
Xin-Liang LI ; Sheng-Nan FU ; Shu-Wan TANG ; Li MA ; Jie SUN ; Cun-Yu LI ; Yun-Feng ZHENG ; Guo-Ping PENG
China Journal of Chinese Materia Medica 2022;47(15):4084-4088
		                        		
		                        			
		                        			This study aimed to explore the triterpenic acid components in leaves of Ilex hainanensis. Alkaline water extraction, macroporous resin adsorption, and high performance liquid chromatography were used to separate and purify the triterpenic acid components in leaves of I. hainanensis. The physical and chemical property analysis, MS, NMR spectroscopy, and literature comparison were performed to identify the structures, and a new triterpene acid compound was discovered:(3S, 4R, 5R, 8R, 9R, 10R, 14S, 17S, 18S, 19R)-3,19-dihydroxyursa-12,20(30)-diene-24,28-dioic-acid, and named ilexhainanin F. In addition, according to its structural characteristics, the ~(19)F-NMR Mosher method was further employed to study its absolute configuration. By comparison of the ~(19)F-NMR chemical shifts of Mosher esters, it was determined that the absolute configuration of the 3-position chiral center of the compound was the S configuration.
		                        		
		                        		
		                        		
		                        			Chromatography, High Pressure Liquid/methods*
		                        			;
		                        		
		                        			Ilex/chemistry*
		                        			;
		                        		
		                        			Magnetic Resonance Spectroscopy
		                        			;
		                        		
		                        			Molecular Structure
		                        			;
		                        		
		                        			Plant Leaves/chemistry*
		                        			;
		                        		
		                        			Triterpenes/analysis*
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail