1.Yiqi Tongluo Particles improve Qi-deficiency and blood stasis in multiple cerebral infarction rats by promoting angiogenesis.
Bing-Jie XUE ; Ji-Sheng HUANG ; Bo MA ; Ting-Ting HAO ; Jian-Xun LIU
China Journal of Chinese Materia Medica 2019;44(1):112-118
This research was aimed to evaluate the protective effect and potential mechanism of Yiqi Tongluo Particles(YQTLs).Firstly,an animal model of multiple cerebral infarction(MCI) with Qi deficiency and blood stasis was established.Rats were randomly divided into six groups:SHAM group,Vehicle group,Buyang Huanwu decoction original group(BYHWO),EGb761 group,high and low dose of YQTLs group.Rats underwent sleep deprivation after one week of MCI and the tongues and pulses of rats after six weeks of sleep deprivation were detected,followed by collecting blood to analysis the blood coagulation.Differential expression of angiogenesis associated proteins was examined using proteomic research and verified by immunohistochemical.RESULTS: showed that neurological function score was obviously declined,G and B value of tongue surface was increased significantly and the pulse distension,the activated partial thromboplatin time(APTT) as well as prothrombin time(PT) were recovered following YQTLs 7.56 g·kg-1 treatment.Furthermore,G value of tongue surface,APTT and PT were also improved by YQTLs 3.78 g·kg-1.The results of proteomic technology showed that proteins associated with angiogenesis were reversed compared with Vehicle group.Moreover,the expression of VEGFR2 from immunohistochemical was promoted after YQTLs treatment.The MCI with Qi deficiency and blood stasis was alleviated obviously following YQTLs treatment and the possible mechanism was that YQTLs may enhance angiogenesis during cerebral ischemia.
Angiogenesis Inducing Agents
;
pharmacology
;
Animals
;
Cerebral Infarction
;
drug therapy
;
Drugs, Chinese Herbal
;
pharmacology
;
Proteomics
;
Qi
;
Random Allocation
;
Rats
2.Paeoniflorin Promotes Angiogenesis in A Vascular Insufficiency Model of Zebrafish in vivo and in Human Umbilical Vein Endothelial Cells in vitro.
Qi-Qi XIN ; Bin-Rui YANG ; He-Feng ZHOU ; Yan WANG ; Bo-Wen YI ; Wei-Hong CONG ; Simon Ming-Yuen LEE ; Ke-Ji CHEN
Chinese journal of integrative medicine 2018;24(7):494-501
OBJECTIVETo investigate the pro-angiogenic effects of paeoniflorin (PF) in a vascular insufficiency model of zebrafish and in human umbilical vein endothelial cells (HUVECs).
METHODSIn vivo, the pro-angiogenic effects of PF were tested in a vascular insufficiency model in the Tg(fli-1:EGFP)y1 transgenic zebrafish. The 24 h post fertilization (hpf) embryos were pretreated with vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitor II (VRI) for 3 h to establish the vascular insufficiency model and then post-treated with PF for 24 h. The formation of intersegmental vessels (ISVs) was observed with a fluorescence microscope. The mRNA expression of fms-like tyrosine kinase-1 (flt-1), kinase insert domain receptor (kdr), kinase insert domain receptor like (kdrl) and von Willebrand factor (vWF) were analyzed by real-time polymerase chain reaction (PCR). In vitro, the pro-angiogenic effects of PF were observed in HUVECs in which cell proliferation, migration and tube formation were assessed.
RESULTSPF (6.25-100 μmol/L) could rescue VRI-induced blood vessel loss in zebrafish and PF (25-100 μmol/L), thereby restoring the mRNA expressions of flt-1, kdr, kdrl and vWF, which were down-regulated by VRI treatment. In addition, PF (0.001-0.03 μmol/L) could promote the proliferation of HUVECs while PF stimulated HUVECs migration at 1.0-10 μmol/L and tube formation at 0.3 μmol/L.
CONCLUSIONPF could promote angiogenesis in a vascular insufficiency model of zebrafish in vivo and in HUVECs in vitro.
Angiogenesis Inducing Agents ; pharmacology ; therapeutic use ; Animals ; Animals, Genetically Modified ; Cells, Cultured ; Disease Models, Animal ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Embryo, Nonmammalian ; Glucosides ; pharmacology ; therapeutic use ; Human Umbilical Vein Endothelial Cells ; drug effects ; physiology ; Humans ; Monoterpenes ; pharmacology ; therapeutic use ; Neovascularization, Physiologic ; drug effects ; Phytotherapy ; Vascular Diseases ; drug therapy ; pathology ; Zebrafish
3.Effect of polyunsaturated fatty acids ω-3 and ω-6 on angiogenesis formation in human gastric cancer.
Jiachi MA ; Yuntao MA ; Tiankang GUO ; Quan CHEN ; Yiping LI ; He SU ; Xiaochang CHEN ; Xiaodan ZHAO ; Qinjin GUO ; Jianbo QI
Chinese Journal of Gastrointestinal Surgery 2017;20(1):84-89
OBJECTIVETo investigate the effects of polyunsaturated fatty acids (PUFA) ω-3 and ω-6, and their middle metabolites PGE2 and PGE3 on angiogenesis formation of gastric cancer, and to explore associated mechanism.
METHODSThe effects of ω-3, ω-6, PGE2, PGE3 on the proliferation and migration of human umbilical vein endothelial cell (HUVEC) were measured by proliferation and migration assay respectively. The angiogenesis assay in vivo was used to measure the effects of ω-3, ω-6, PGE2 and PGE3 on neovascularization. In all the assays, groups without ω-3, ω-6, PGE2 and PGE3 were designed as the control.
RESULTSWith the increased concentration of ω-6 from 1 μmol/L to 10 μmol/L, the proliferation ability of HUVECs enhanced, and the number of migration cells also increased from 28.2±3.0 to 32.8±2.1, which was higher than control group (21.2±3.2) respectively (both P<0.05). With the increased concentration of ω-3 from 1 μmol/L to 10 μmol/L, the proliferation ability of HUVECs was inhibited, and the number of migration cells decreased from 15.8±2.0 to 11.0±2.1, which was lower than control group (22.1±3.0) respectively (both P<0.05). In the angiogenesis assay, compared with control group (standard number: 43 721±4 654), the angiogenesis ability of HUVECs was significantly enhanced by ω-6 in concentration-dependent manner (1 μmol/L group: 63 238±4 795, 10 μmol/L group: 78 166±6 123, all P<0.01). Meanwhile, with the increased concentration of ω-3 from 1 μmol/L to 10 μmol/L, the angiogenesis ability was significantly decreased from 30 129±3 102 to 20 012±1 541(all P<0.01). The proliferation and migration ability of HUVECs were significantly promoted by ω-6 metabolites PGE2 (P<0.05) in a concentration-dependent manner. In contrast, ω-3 metabolites PGE3 significantly inhibited the proliferation and migration ability of HUVECs in a concentration-dependent manner (all P<0.05). After rofecoxib (a COX-2 specific inhibitor) inhibited the expression of COX-2, the expression level of PGE2 was significantly decreased in a dose-dependent manner. In co-culture system, whose gastric cancer cells expressed positive COX-2, ω-6 could increase angiogenesis of gastric cancer cells(P<0.01), but ω-3 could inhibit such angiogenesis(P<0.01). In co-culture system, whose gastric cancer cells did not express COX-2, ω-3 could inhibit the angiogenesis of gastric cancer cells (P<0.05), but ω-6 had no effect on angiogenesis.
CONCLUSIONSThe PUFA ω-6 can enhance the angiogenesis via the promotion of proliferation and migration of HUVECs, and COX-2 and PGE2 may play an important role in this process, whereas, the ω-3 can inhibit the angiogenesis through its middle metabolites PGE3 to inhibit the proliferation and migration of HUVECs. Results of this experiment may provide a new approach to inhibit and prevent the spread of gastric cancer.
Alprostadil ; analogs & derivatives ; pharmacology ; Angiogenesis Inducing Agents ; metabolism ; pharmacology ; Angiogenesis Inhibitors ; pharmacology ; Cell Count ; methods ; Cell Line, Tumor ; drug effects ; physiology ; Cell Migration Assays ; Cell Movement ; drug effects ; Cell Proliferation ; drug effects ; Coculture Techniques ; Cyclooxygenase 2 ; pharmacology ; Dinoprostone ; metabolism ; pharmacology ; Fatty Acids, Omega-3 ; pharmacology ; Fatty Acids, Omega-6 ; metabolism ; pharmacology ; Fatty Acids, Unsaturated ; pharmacology ; Human Umbilical Vein Endothelial Cells ; drug effects ; physiology ; Humans ; Lactones ; pharmacology ; Neovascularization, Pathologic ; physiopathology ; Stomach Neoplasms ; physiopathology ; Sulfones ; pharmacology
4.Angiogenin for the Diagnosis and Grading of Dry Eye Syndrome.
Won Soo KIM ; Sung Wook WEE ; Seung Hoon LEE ; Jae Chan KIM
Korean Journal of Ophthalmology 2016;30(3):163-171
PURPOSE: To investigate the properties of angiogenin (ANG) as a potential tool for the diagnosis and grading of dry eye syndrome (DES) by analyzing tear protein profiles. METHODS: Tear samples were collected with capillary tubes from 52 DES patients and 29 normal individuals as controls. Tear protein profiles were analyzed with an immunodot blot assay as a screening test. To confirm that the tear ANG levels were in inverse proportion to the disease severity grade, the ANG and lactoferrin (LF) tear contents of normal controls and DES patients were compared in an enzyme-linked immunosorbent assay. RESULTS: In the immunodot blot assay, the ANG area was lower in patients with grades 3 and 4 DES than in normal controls. The areas of basic fibroblast growth factor, transforming growth factor β2, and interleukin 10 were significantly greater than those of normal controls only in grade 4 DES patients, but these proteins were not linearly correlated with dry eye severity. Upon enzyme-linked immunosorbent assay analysis, the mean concentrations of ANG and LF decreased significantly as dry eye severity increased, except between grades 1 and 2. In addition, the ratios of ANG and LF to total tear proteins were correlated significantly with DES severity. CONCLUSIONS: ANG level was significantly lower in DES patients than in normal controls, and was significantly correlated with the worsening severity of DES, except between grades 1 and 2, as was LF. Therefore, ANG may be a useful measure of DES severity through proteomic analysis.
Adult
;
Aged
;
Angiogenesis Inducing Agents/pharmacology
;
Dry Eye Syndromes/*diagnosis/metabolism
;
Enzyme-Linked Immunosorbent Assay
;
Female
;
Follow-Up Studies
;
Humans
;
Immunoblotting
;
Male
;
Middle Aged
;
Proteomics/methods
;
Ribonuclease, Pancreatic/*pharmacology
;
Severity of Illness Index
;
Tears/chemistry
;
Young Adult
5.Buyang Huanwu decoction promotes neuroblast migration from subventricular zone via inducing angiogenesis after ischemia.
Lin LI ; Zhi-ting LIU ; Li-sheng CHU ; Tian-hong YU ; Tie-bing QU ; Jun WANG ; Cui-cui REN
China Journal of Chinese Materia Medica 2015;40(2):298-302
OBJECTIVETo study the effect of Buyang Huanwu decoction (BYHWD) inducing angiogenesis on the neuroblast migration from the subventricular zone and its mechanisms after focal cerebral ischemia.
METHODThe middle cerebral artery occlusion (MCAO) was performed to mice for 30 minutes to establish the model. The rats were divided into sham group, model group, BYHWD group and endostatin group. BYHWD (20 g x kg(-1), ig) and endostatin (10 μg, sc) were administered 24 h after ischemia once a day for consecutively 14 days. At 14 d after ischemia, the density of micro-vessel and the number of neuroblasts in the ischemia border zone were determined by immunofluorescence staining. The mRNA and protein expression of cell-derived factor-1 (SDF-1) and brain-derived neurotrophic (BDNF) were examined by real-time PCR and Western blot.
RESULTCompared with the model group, BYHWD significantly increased the density of micro-vessel and the number of DCX positive cells in the ischemia border zone (P < 0.01), and significantly increased the SDF-1 and BDNF mRNA and protein expression (P < 0.01). Compared with BYHWD group, endostatin significantly reduced the density of micro-vessel and the number of DCX positive cells in the ischemia border zone (P < 0.01), as well as the SDF-1, BDNF mRNA and protein expression (P < 0.01).
CONCLUSIONBYHWD could promote the neuroblast migration from the subventricular zone via inducing angiogenesis after cerebral ischemia, the mechanism may be correlated with up-regulating the expression of SDF-1 and BDNF.
Angiogenesis Inducing Agents ; pharmacology ; Animals ; Brain Ischemia ; pathology ; physiopathology ; Brain-Derived Neurotrophic Factor ; analysis ; genetics ; Cell Movement ; drug effects ; Cerebral Ventricles ; pathology ; Chemokine CXCL12 ; analysis ; genetics ; Drugs, Chinese Herbal ; pharmacology ; Male ; Mice ; Mice, Inbred ICR ; Neurons ; drug effects ; physiology
6.Angiogenic factors are associated with development of acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation.
Di-min NIE ; Qiu-ling WU ; Xia-xia ZHU ; Ran ZHANG ; Peng ZHENG ; Jun FANG ; Yong YOU ; Zhao-dong ZHONG ; Ling-hui XIA ; Mei HONG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):694-699
Acute graft-versus-host disease (aGVHD) is a serious complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, the mechanisms of aGVHD are not well understood. We aim to investigate the roles of the three angiogenic factors: angiopoietin-1 (Ang-1), Ang-2 and vascular endothelial growth factor (VEGF) in the development of aGVHD. Twenty-one patients who underwent allo-HSCT were included in our study. The dynamic changes of Ang-1, Ang-2 and VEGF were monitored in patients before and after allo-HSCT. In vitro, endothelial cells (ECs) were treated with TNF-β in the presence or absence of Ang-1, and then the Ang-2 level in the cell culture medium and the tubule formation by ECs were evaluated. After allo-HSCT, Ang-1, Ang-2 and VEGF all exhibited significant variation, suggesting these factors might be involved in the endothelial damage in transplantation. Patients with aGVHD had lower Ang-1 level at day 7 but higher Ang-2 level at day 21 than those without aGVHD, implying that Ang-1 may play a protective role in early phase yet Ang-2 is a promotion factor to aGVHD. In vitro, TNF-β promoted the release of Ang-2 by ECs and impaired tubule formation of ECs, which were both weakened by Ang-1, suggesting that Ang-1 may play a protective role in aGVHD by influencing the secretion of Ang-2, consistent with our in vivo tests. It is concluded that monitoring changes of these factors following allo-HSCT might help to identify patients at a high risk for aGVHD.
Acute Disease
;
Adolescent
;
Adult
;
Angiogenesis Inducing Agents
;
immunology
;
metabolism
;
pharmacology
;
Angiopoietin-1
;
genetics
;
immunology
;
pharmacology
;
Angiopoietin-2
;
genetics
;
immunology
;
pharmacology
;
Antineoplastic Agents
;
therapeutic use
;
Female
;
Gene Expression Regulation, Neoplastic
;
Graft vs Host Disease
;
genetics
;
immunology
;
pathology
;
Hematopoietic Stem Cell Transplantation
;
Human Umbilical Vein Endothelial Cells
;
cytology
;
drug effects
;
immunology
;
Humans
;
Leukemia, Myeloid
;
genetics
;
immunology
;
pathology
;
therapy
;
Lymphoma, Non-Hodgkin
;
genetics
;
immunology
;
pathology
;
therapy
;
Male
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma
;
genetics
;
immunology
;
pathology
;
therapy
;
Retrospective Studies
;
Signal Transduction
;
Transplantation, Homologous
;
Tumor Necrosis Factor-alpha
;
pharmacology
;
Vascular Endothelial Growth Factor A
;
genetics
;
immunology
7.Angiogenic activity of alginate-graft-PEI/pVEGF complexes in vivo.
Zhonghui HUANG ; Wei TENG ; Ying CHEN ; Qinmei WANG
Chinese Journal of Biotechnology 2013;29(12):1817-1827
To study the angiogenic activity of amphoteric brush-type copolymer complex of alginate-graft-PEI/pVEGF (Alg-g-PEI/pVEGF) in vivo, we evaluated the toxicity of Alg-g-PEI/pVEGF complexes to rMSCs and zebra fish first. Then, we used gel retardation assay to investigate the protection of complex to pDNA against DNase I, serum and heparin. For in vivo study, we evaluated the angiogenic activity of Alg-g-PEI/pVEGF complexes by using CAM and zebra fish as animal models, PEI 25K/pVEGF and saline as positive and negative controls. Our results show that Alg-g-PEI protected pVEGF from enzymolysis and displacement of heparin in some degree, and its complexes with pVEGF were less toxic to rMSCs and zebra fish. Alg-g-PEI/pVEGF complexes induced significant angiogenesis, which was dosage-dependent. In CAM, when the dosage of pVEGF was 2.4 microg/CAM, Alg-g-PEI group achieved the maximum of angiogenesis, and the area ratio of vessel to the total surface was 44.04%, which is higher than PEI 25K group (35.90%) and saline group (24.03%) (**P < 0.01). In zebra fish, the angiogenesis increased with the increase of N/P ratios of Alg-g-PEI/pVEGF complexes in our studied range; when N/P ratio was 110, the optimal angiogenesis was obtained with vessel length of 1.11 mm and area of 1.70 x 10(3) pixels, which is higher than saline group (0.69 mm and 0.94 x 10(3) pixels) (**P < 0.01) and PEI 25k group (0.82 mm and 1.11 x 10(3) pixels) (**P < 0.01). Our results demonstratethat Alg-g-PEI/pVEGF significantly induces angiogenesis in CAM and zebra fish, and has a great potential in therapeutic angiogenesis.
Alginates
;
chemistry
;
Angiogenesis Inducing Agents
;
pharmacology
;
Animals
;
Chick Embryo
;
Drug Carriers
;
chemistry
;
Genetic Vectors
;
genetics
;
Glucuronic Acid
;
chemistry
;
Hexuronic Acids
;
chemistry
;
Mesenchymal Stromal Cells
;
cytology
;
drug effects
;
Polyethyleneimine
;
chemistry
;
Polymers
;
pharmacology
;
toxicity
;
Vascular Endothelial Growth Factor A
;
chemistry
;
Zebrafish
8.A microarray analysis of angiogenesis modulation effect of Xuefu Zhuyu Decoction on endothelial cells.
Jun SONG ; Wen-Yuan CHEN ; Li-Ya WU ; Liang-Pu ZHENG ; Wei LIN ; Dong GAO ; Ted J KAPTCHUK ; Ke-Ji CHEN
Chinese journal of integrative medicine 2012;18(7):502-506
OBJECTIVETo study the angiogenesis modulation mechanism of Xuefu Zhuyu Decoction () on the endothelial cell line ECV304.
METHODSECV304 cells were treated with 2.5% Xuefu Zhuyu Decoction-containing serum (XFZYD-CS) for 24 h, 48 h or 72 h. Thiazolyl blue tetrazolium bromide (MTT), fluorescence activating cell sorter (FACS), migration, adhesion and in vitro tube formation assays were conducted to confirm an angiogenesis effect of XFZYD at 3 time points. An analysis of angiogenesis regulator profiles was performed at 3 times with real-time polymerase chain reaction (RT-PCR) superarray.
RESULTSAt 48 h, XFZYD-CS induced ECV304 significantly improved cell viability, number in S phase, migration, adhesion and tube formation. At 24 h and 72 h, only cell migration was elevated. Microarray results showed that the expression of 27 angiogenesis-related genes was changed.
CONCLUSIONXFZYD-CS treatment induced angiogenesis on ECV304 cells with significant cellcular changes occurring at 48 h and genetic changes as early as 24 h.
Angiogenesis Inducing Agents ; pharmacology ; Cell Adhesion ; drug effects ; genetics ; Cell Line ; Cell Movement ; drug effects ; genetics ; Cell Proliferation ; drug effects ; Cell Survival ; drug effects ; genetics ; Drugs, Chinese Herbal ; pharmacology ; Endothelial Cells ; drug effects ; metabolism ; Gene Expression Regulation ; Humans ; Neovascularization, Physiologic ; drug effects ; genetics ; Oligonucleotide Array Sequence Analysis ; methods
9.Application of zebrafish model organism in the research of Chinese materia medica.
Lei CHEN ; Yi LIU ; Sheng-Wang LIANG
Acta Pharmaceutica Sinica 2012;47(4):434-439
Zebrafish has become an important model organism in many fields of biomedical studies and been increasingly used in Chinese materia medica studies in recent years. This article summarized the achievements and prospect for zebrafish as a pharmacological and toxicological tool in the study and development of Chinese materia medica.
Angiogenesis Inducing Agents
;
pharmacology
;
Angiogenesis Inhibitors
;
pharmacology
;
Animals
;
Disease Models, Animal
;
Materia Medica
;
pharmacology
;
therapeutic use
;
toxicity
;
Medicine, Chinese Traditional
;
Memory Disorders
;
prevention & control
;
Neovascularization, Physiologic
;
drug effects
;
Zebrafish
10.Effect of xuefu zhuyu decoction in inducing angiogenesis gene regulation of endothelial cell line ECV304.
Dong GAO ; Wen-yuan CHEN ; Li-ya WU
Chinese Journal of Integrated Traditional and Western Medicine 2010;30(2):153-156
OBJECTIVETo study the acting mechanism of endothelial cell line ECV304 in regulating angiogenesis induced by Xuefu Zhuyu Decoction (XFZY).
METHODSThe angiogenesis effect of XFZY-contained serum (XFZY-CS) was confirmed by observing its impact on proliferation, cell cycle, migration of ECV304 and on vascular neogenesis in vitro. Then the effect of XFZY on various angiogenesis controlling factors was analyzed with gene chip microarray technique.
RESULTSTreatment of XFZY-CS in 2.5% concentration for 48 h showed evident actions of enhancing ECV304 activity, increasing cell numbers of S phase, inducing cell migration and promoting the in vitro angiogenesis. Meanwhile, expressions of four angiogenesis controlling genes were up-regulated and 10 were down-regulated.
CONCLUSIONThe angiogenesis mechanism of ECV304 induced by XFZY is complex, it shows a multi-pathway and multi-target feature.
Angiogenesis Inducing Agents ; Animals ; Cell Line ; Drugs, Chinese Herbal ; pharmacology ; Endothelial Cells ; drug effects ; Female ; Gene Expression Regulation ; drug effects ; Male ; Neovascularization, Physiologic ; drug effects ; Rats ; Rats, Sprague-Dawley

Result Analysis
Print
Save
E-mail