1.Targeting Peripheral μ-opioid Receptors or μ-opioid Receptor-Expressing Neurons Does not Prevent Morphine-induced Mechanical Allodynia and Anti-allodynic Tolerance.
Feng DU ; Guangjuan YIN ; Lei HAN ; Xi LIU ; Dong DONG ; Kaifang DUAN ; Jiantao HUO ; Yanyan SUN ; Longzhen CHENG
Neuroscience Bulletin 2023;39(8):1210-1228
The chronic use of morphine and other opioids is associated with opioid-induced hypersensitivity (OIH) and analgesic tolerance. Among the different forms of OIH and tolerance, the opioid receptors and cell types mediating opioid-induced mechanical allodynia and anti-allodynic tolerance remain unresolved. Here we demonstrated that the loss of peripheral μ-opioid receptors (MORs) or MOR-expressing neurons attenuated thermal tolerance, but did not affect the expression and maintenance of morphine-induced mechanical allodynia and anti-allodynic tolerance. To confirm this result, we made dorsal root ganglia-dorsal roots-sagittal spinal cord slice preparations and recorded low-threshold Aβ-fiber stimulation-evoked inputs and outputs in superficial dorsal horn neurons. Consistent with the behavioral results, peripheral MOR loss did not prevent the opening of Aβ mechanical allodynia pathways in the spinal dorsal horn. Therefore, the peripheral MOR signaling pathway may not be an optimal target for preventing mechanical OIH and analgesic tolerance. Future studies should focus more on central mechanisms.
Humans
;
Morphine/pharmacology*
;
Hyperalgesia/metabolism*
;
Analgesics, Opioid/pharmacology*
;
Neurons/metabolism*
;
Signal Transduction
2.Blockade of the Dopamine D3 Receptor Attenuates Opioids-Induced Addictive Behaviours Associated with Inhibiting the Mesolimbic Dopamine System.
Rong-Rong HU ; Meng-Die YANG ; Xiao-Yan DING ; Ning WU ; Jin LI ; Rui SONG
Neuroscience Bulletin 2023;39(11):1655-1668
Opioid use disorder (OUD) has become a considerable global public health challenge; however, potential medications for the management of OUD that are effective, safe, and nonaddictive are not available. Accumulating preclinical evidence indicates that antagonists of the dopamine D3 receptor (D3R) have effects on addiction in different animal models. We have previously reported that YQA14, a D3R antagonist, exhibits very high affinity and selectivity for D3Rs over D2Rs, and is able to inhibit cocaine- or methamphetamine-induced reinforcement and reinstatement in self-administration tests. In the present study, our results illustrated that YQA14 dose-dependently reduced infusions under the fixed-ratio 2 procedure and lowered the breakpoint under the progressive-ratio procedure in heroin self-administered rats, also attenuated heroin-induced reinstatement of drug-seeking behavior. On the other hand, YQA14 not only reduced morphine-induced expression of conditioned place preference but also facilitated the extinguishing process in mice. Moreover, we elucidated that YQA14 attenuated opioid-induced reward or reinforcement mainly by inhibiting morphine-induced up-regulation of dopaminergic neuron activity in the ventral tegmental area and decreasing dopamine release in the nucleus accumbens with a fiber photometry recording system. These findings suggest that D3R might play a very important role in opioid addiction, and YQA14 may have pharmacotherapeutic potential in attenuating opioid-induced addictive behaviors dependent on the dopamine system.
Rats
;
Mice
;
Animals
;
Analgesics, Opioid
;
Dopamine
;
Heroin/pharmacology*
;
Dopamine Antagonists/pharmacology*
;
Receptors, Dopamine D3/metabolism*
;
Morphine/pharmacology*
;
Behavior, Addictive/drug therapy*
;
Self Administration
3.Involvement of Opioid Peptides in the Analgesic Effect of Spinal Cord Stimulation in a Rat Model of Neuropathic Pain.
Fu-Jun ZHAI ; Song-Ping HAN ; Tian-Jia SONG ; Ran HUO ; Xing-Yu LAN ; Rong ZHANG ; Ji-Sheng HAN
Neuroscience Bulletin 2022;38(4):403-416
Spinal cord stimulation (SCS)-induced analgesia was characterized, and its underlying mechanisms were examined in a spared nerve injury model of neuropathic pain in rats. The analgesic effect of SCS with moderate mechanical hypersensitivity was increased with increasing stimulation intensity between the 20% and 80% motor thresholds. Various frequencies (2, 15, 50, 100, 10000 Hz, and 2/100 Hz dense-dispersed) of SCS were similarly effective. SCS-induced analgesia was maintained without tolerance within 24 h of continuous stimulation. SCS at 2 Hz significantly increased methionine enkephalin content in the cerebrospinal fluid. The analgesic effect of 2 Hz was abolished by μ or κ opioid receptor antagonist. The effect of 100 Hz was prevented by a κ antagonist, and that of 10 kHz was blocked by any of the μ, δ, or κ receptor antagonists, suggesting that the analgesic effect of SCS at different frequencies is mediated by different endorphins and opioid receptors.
Analgesics
;
Animals
;
Narcotic Antagonists/pharmacology*
;
Neuralgia/therapy*
;
Opioid Peptides
;
Rats
;
Receptors, Opioid/physiology*
;
Receptors, Opioid, kappa
;
Spinal Cord
;
Spinal Cord Stimulation
4.Spinal Mechanisms of Itch Transmission.
Devin M BARRY ; Admire MUNANAIRI ; Zhou-Feng CHEN
Neuroscience Bulletin 2018;34(1):156-164
Peripheral itch stimuli are transmitted by sensory neurons to the spinal cord dorsal horn, which then transmits the information to the brain. The molecular and cellular mechanisms within the dorsal horn for itch transmission have only been investigated and identified during the past ten years. This review covers the progress that has been made in identifying the peptide families in sensory neurons and the receptor families in dorsal horn neurons as putative itch transmitters, with a focus on gastrin-releasing peptide (GRP)-GRP receptor signaling. Also discussed are the signaling mechanisms, including opioids, by which various types of itch are transmitted and modulated, as well as the many conflicting results arising from recent studies.
Action Potentials
;
drug effects
;
Analgesics, Opioid
;
pharmacology
;
Animals
;
Humans
;
Pruritus
;
metabolism
;
pathology
;
Sensory Receptor Cells
;
metabolism
;
Spinal Cord
;
pathology
;
Synaptic Transmission
;
physiology
5.Porcine diazepam-binding inhibitor and bovine diazepam-binding inhibitor affect morphine antinociception via different receptors.
Yu-Zhen CHEN ; Xiao-Cun LI ; Zhen-Quan GUO ; Li ZHOU ; Zhuan ZHOU ; Song-Ping LIANG ; Cai-Hong WU
Protein & Cell 2017;8(2):140-143
Analgesics, Opioid
;
chemistry
;
pharmacology
;
Animals
;
Cattle
;
Diazepam
;
chemistry
;
pharmacology
;
Diazepam Binding Inhibitor
;
chemical synthesis
;
chemistry
;
pharmacology
;
Dose-Response Relationship, Drug
;
Mice
;
Morphine
;
chemistry
;
pharmacology
;
Receptors, GABA-A
;
metabolism
;
Swine
6.Analgesic effect of fentanyl in neonates during mechanical ventilation.
Shu-Shu CHEN ; Ling LIU ; Pin HU ; Bi-Zhen SHI ; Yi-Kang FU ; Rui LUO ; Cai XIE
Chinese Journal of Contemporary Pediatrics 2015;17(10):1045-1050
OBJECTIVETo study the analgesic effect and safety of fentanyl in neonates receiving mechanical ventilation.
METHODSThirty neonates receiving mechanical ventilation between December 2010 and February 2011 were randomized into drug intervention group and control group (n=15 each). In addition to the conventional treatment for both groups, the drug intervention group received fentanyl as the analgesic treatment. Heart rate, respiratory rate, blood pressure changes, and premature infant pain profile (PIPP) score before treatment and at 30 minutes, 2 hours, and 4 hours after treatment were recorded in both groups. Follow-up visits were performed for these infants after discharge, and the CDCC intellectual development scale for infants was applied to measure mental development index (MDI) and psychomotor development index (PDI) at 3, 6, 9, and 12 months of age.
RESULTSThe respiratory rate and heart rate decreased in the drug intervention group after fentanyl treatment compared with the control group (P<0.05), and the PIPP scores in the drug intervention group was significantly lower than in the control group (P<0.05). The results of follow-up visits showed no significant differences in MDI and PDI at 3, 6, 9 and 12 months of age between the drug intervention and control groups (P>0.05).
CONCLUSIONSFentanyl can relieve the pain response in neonates receiving mechanical ventilation, with no long-term adverse effects on neurodevelopment.
Analgesics, Opioid ; pharmacology ; Child Development ; drug effects ; Female ; Fentanyl ; pharmacology ; Heart Rate ; drug effects ; Humans ; Infant, Newborn ; Infant, Premature ; Male ; Respiration ; drug effects ; Respiration, Artificial
7.Impact of morphine on the reproductivity of male rats.
Qing-Zhen LIU ; Yong SHAO ; Xue-Jun SHANG ; Wei-Yan LI
National Journal of Andrology 2014;20(12):1073-1076
OBJECTIVETo explore the effect of morphine on male reproductive ability and its mechanisms in the rat model of morphine tolerance.
METHODSTwenty male SD rats were equally randomized to groups I (control) and II (morphine tolerance). On the 1st day, the basic paw withdrawal thermal latency (PWTL) was obtained from all the rats followed by subcutaneous injection of morphine at 10 mg/kg and then calculation of the percentage of the maximal possible effect (MPE) at 30 min after administration. On the 2nd day, the rats of group I were injected subcutaneously with saline and those of group I with morphine at 10 mg/kg bid for 7 days. Then all the rats were killed after behavioral tests and their testes and epididymides harvested for sperm counting and determina- tion of the expressions of Bax and Caspase-3 by immunohistochemistry.
RESULTSOn the 1st day, no obvious differences were ob- served between the two groups in the basic PWTL or the percentage of MPE. On the 7th day, the percentage of MPE was significantly decreased in group II as compared with group I (P < 0.05), while the basic PWTL showed no marked difference between the two groups. Group II also exhibited a significantly reduced epididymal perm count (P < 0.05) and remarkably upregulated expressions of Bax and Caspase-3 in comparison with group I.
CONCLUSIONMorphine might increase testicular cell apoptosis and reduce sperm concentration by upregulating the expressions of Bax and Caspase-3 in the rat model of morphine tolerance.
Analgesics, Opioid ; pharmacology ; Animals ; Caspase 3 ; metabolism ; Drug Tolerance ; physiology ; Hot Temperature ; Male ; Morphine ; pharmacology ; Random Allocation ; Rats ; Reproduction ; drug effects ; Sperm Count ; Testis ; drug effects ; Time Factors ; Up-Regulation ; bcl-2-Associated X Protein ; metabolism
8.Switching from morphine to fentanyl attenuates the decline of µ-opioid receptor expression in periaqueductal gray of rats with morphine tolerance.
Yan-peng DONG ; Li SUN ; Xiao-yan LIU ; Ruo-shan LIU
Chinese Medical Journal 2013;126(19):3712-3716
BACKGROUNDOpioid switching is a therapeutic maneuver to improve analgesic response and/or reduce adverse side effects although the underlying mechanisms remain unknown. The µ-opioid receptor (MOR) has an important role in mediating the actions of morphine and other analgesic agents. This study is aimed at exploring the changes of MOR in the periaqueductal gray (PAG) in rats when morphine is substituted for equianalgesic fentanyl.
METHODSForty rats were randomly assigned to five treatment groups: 7 days normal saline group (N group), 7 days fentanyl group (F group), 7 days morphine group (M group), 7 days morphine and 7 days fentanyl-switching group (MF group), and 14 days morphine group (MM group). Rats repeatedly received subcutaneous injections of morphine sulfate (10 mg/kg) or equianalgesic fentanyl sulfate (0.1 mg/kg) twice daily. Rats' antinociceptive response to thermal pain was evaluated by the tail flick latency assay. MOR mRNA and protein expression in the PAG were measured using RT-PCR and Western blotting analyses respectively.
RESULTSThis study showed that after morphine was substituted with fentanyl on day 8, the tail flick latency (TFL) increased from (3.9 ± 0.4) seconds to (11.4 ± 0.4) seconds. The results also demonstrated that both MOR mRNA and protein expression in the PAG of rats in the MF group were less than that in the M group (P < 0.05) but more than that in MM group (P < 0.05).
CONCLUSIONSEquianalgesic fentanyl was still antinociceptive effective in rats with morphine tolerance, which may be due to the switching from morphine to fentanyl attenuating the decline of MOR expression in the PAG of rats.
Analgesics, Opioid ; pharmacology ; Animals ; Drug Tolerance ; Fentanyl ; pharmacology ; Male ; Morphine ; pharmacology ; Periaqueductal Gray ; chemistry ; RNA, Messenger ; analysis ; Rats ; Rats, Wistar ; Receptors, Opioid, mu ; analysis ; genetics
9.Effects of Co-Administration of Intrathecal Nociceptin/Orphanin FQ and Opioid Antagonists on Formalin-Induced Pain in Rats.
Yonsei Medical Journal 2013;54(3):763-771
PURPOSE: Nociceptin/orphanin FQ (N/OFQ) as an endogeneous hexadecapeptide is known to exert antinociceptive effects spinally. The aims of this study were to demonstrate the antinociceptive effects of i.t. N/OFQ and to investigate the possible interaction between N/OFQ and endogenous opioid systems using selective opioid receptor antagonists in rat formalin tests. MATERIALS AND METHODS: I.t. N/OFQ was injected in different doses (1-10 nmol) via a lumbar catheter prior to a 50 microL injection of 5% formalin into the right hindpaw of rats. Flinching responses were measured from 0-10 min (phase I, an initial acute state) and 11-60 min (phase II, a prolonged tonic state). To observe which opioid receptors are involved in the anti-nociceptive effect of i.t. N/OFQ in the rat-formalin tests, naltrindole (5-20 nmol), beta-funaltrexamine (1-10 nmol), and norbinaltorphimine (10 nmol), selective delta-, micro- and kappa-opioid receptor antagonists, respectively, were administered intrathecally 5 min after i.t. N/OFQ. RESULTS: I.t. N/OFQ attenuated the formalin-induced flinching responses in a dose-dependent manner in both phases I and II. I.t. administration of naltrindole and beta-funaltrexamine dose-dependently reversed the N/OFQ-induced attenuation of flinching responses in both phases; however, norbinaltorphimine did not. CONCLUSION: I.t. N/OFQ exerted an antinociceptive effect in both phases of the rat-formalin test through the nociceptin opioid peptide receptor. In addition, the results suggested that delta- and micro-opioid receptors, but not kappa-opioid receptors, are involved in the antinociceptive effects of N/OFQ in the spinal cord of rats.
Analgesics/administration & dosage/*pharmacology
;
Animals
;
Formaldehyde/toxicity
;
Injections, Spinal
;
Male
;
Naltrexone/administration & dosage/analogs & derivatives/pharmacology
;
Narcotic Antagonists/administration & dosage/*pharmacology
;
Opioid Peptides/administration & dosage/*pharmacology
;
Pain Measurement
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Opioid/*agonists/drug effects
10.Roles of calcitonin gene-related peptide family in pain and opioid tolerance.
Acta Physiologica Sinica 2013;65(3):347-354
The calcitonin gene-related peptide (CGRP) family mainly includes CGRPα, CGRPβ, adrenomedullin, calcitonin and amylin. The members of CGRP family and their receptors are widely distributed in the central and peripheral nervous systems. Studies show that members of CGRP family such as CGRP and adrenomedullin play important roles in the transmission of nociceptive information. At spinal level, CGRP promotes the transmission of nociceptive information, spinal morphine tolerance, migraine, inflammatory pain and neuropathic pain. At superspinal level, CGRP suppresses the transmission of nociceptive information. Adrenomedullin is a pain-related neuropeptide which has recently been demonstrated. It facilitates the transmission of nociceptive information and is involved in the development and maintenance of opioid tolerance. The involvement of amylin and calcitonin in pain is not clear yet.
Adrenomedullin
;
physiology
;
Analgesics, Opioid
;
pharmacology
;
Animals
;
Calcitonin Gene-Related Peptide
;
physiology
;
Drug Tolerance
;
Humans
;
Islet Amyloid Polypeptide
;
physiology
;
Nociception
;
Pain
;
physiopathology

Result Analysis
Print
Save
E-mail