1.Policies, standards and technological models of digital rehabilitation aligned with the framework of WHO's global digital health strategy
Yaru YANG ; Zhuoying QIU ; Di CHEN ; Zhongyan WANG ; Meng ZHANG ; Qi JING ; Yaoguang ZHANG
Chinese Journal of Rehabilitation Theory and Practice 2025;31(2):125-135
ObjectiveTo systematically analyze the global policy framework, standard systems and application technology models of digital rehabilitation within the framework of the World Health Organization (WHO) Global Digital Health Strategy and propose policy recommendations for the future development of digital rehabilitation. MethodsBased on the policies on digital health and rehabilitation development issued by the WHO, focusing on the Global Digital Health Strategy, Rehabilitation 2030 Initiative, Rehabilitation in Health Systems, Rehabilitation in Health Systems: A Guide for Action, and World Report on Disability, a systematic review was conducted, to explore the policy architecture and core content of digital rehabilitation, the standard system for digitalizing rehabilitation, and key technological models for the development of digital rehabilitation. ResultsIn the context of global health and digital transformation, the development of digital rehabilitation services was an essential component of the global digital health strategy. Building a comprehensive policy framework and content system for digital rehabilitation was critical for strengthening rehabilitation data governance, enhancing data utilization efficiency, and ensuring data privacy and security. Empowering rehabilitation with digital technology was vital for improving the standardization, effectiveness, coverage, quality and safety of rehabilitation services. International digital rehabilitation policies primarily involved the following areas: policy and governance, digital standard systems, data privacy, security and ethics, digital talent cultivation and capacity building, and monitoring, evaluation and continuous improvement of digitally empowered rehabilitation services. The standard system for rehabilitation digitization covered the three major reference classifications of the WHO Family of International Classifications, including International Classification of Diseases Eleventh Revision (ICD-11), International Classification of Functioning, Disability and Health (ICF), and International Classification of Health Interventions (ICHI), especially ICF. It also included international data interoperability standards, data security and privacy protection standards, data quality and certification standards, and health information standards, etc. The application technology models of digital rehabilitation primarily included data-driven service models, artificial intelligence -enabled models, and remote rehabilitation models combined with virtual reality, augmented reality technologies, and Internet of Things support. ConclusionThe establishment and implementation of comprehensive policies, standards and technological models for digital rehabilitation are crucial for driving the digital transformation and development of global rehabilitation services. Under the framework of the WHO Global Digital Health Strategy, it is necessary to build adaptive digital rehabilitation policy frameworks, and enhance digital governance capabilities and levels, establishing and improving digital rehabilitation standard systems, and promoting the interoperability and integration of rehabilitation data with other health big data. Meanwhile, it is essential to actively develop data-driven technological models for rehabilitation services to comprehensively improve the accessibility, availability, quality and safety of rehabilitation services.
2.Five new triterpenoid saponins from the kernels of Momordica cochinchinensis
Ru DING ; Jia-qi WANG ; Yi-yang LUO ; Yong-long HAN ; Xiao-bo LI ; Meng-yue WANG
Acta Pharmaceutica Sinica 2025;60(2):442-448
Five saponins were isolated from the kernels of
3.Chemical consitituents and hypoglycemic activity of Qinhuai No. 1 Rehmannia glutinosa
Meng YANG ; Zhi-you HAO ; Xiao-lan WANG ; Chao-yuan XIAO ; Jun-yang ZHANG ; Shi-qi ZHOU ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2025;60(1):205-210
Eight compounds were isolated and purified from the ethyl acetate part of 70% acetone extract of
4.Mechanisms of Gut Microbiota Influencing Reproductive Function via The Gut-Gonadal Axis
Ya-Qi ZHAO ; Li-Li QI ; Jin-Bo WANG ; Xu-Qi HU ; Meng-Ting WANG ; Hai-Guang MAO ; Qiu-Zhen SUN
Progress in Biochemistry and Biophysics 2025;52(5):1152-1164
Reproductive system diseases are among the primary contributors to the decline in social fertility rates and the intensification of aging, posing significant threats to both physical and mental health, as well as quality of life. Recent research has revealed the substantial potential of the gut microbiota in improving reproductive system diseases. Under healthy conditions, the gut microbiota maintains a dynamic balance, whereas dysfunction can trigger immune-inflammatory responses, metabolic disorders, and other issues, subsequently leading to reproductive system diseases through the gut-gonadal axis. Reproductive diseases, in turn, can exacerbate gut microbiota imbalance. This article reviews the impact of the gut microbiota and its metabolites on both male and female reproductive systems, analyzing changes in typical gut microorganisms and their metabolites related to reproductive function. The composition, diversity, and metabolites of gut bacteria, such as Bacteroides, Prevotella, and Firmicutes, including short-chain fatty acids, 5-hydroxytryptamine, γ-aminobutyric acid, and bile acids, are closely linked to reproductive function. As reproductive diseases develop, intestinal immune function typically undergoes changes, and the expression levels of immune-related factors, such as Toll-like receptors and inflammatory cytokines (including IL-6, TNF-α, and TGF-β), also vary. The gut microbiota and its metabolites influence reproductive hormones such as estrogen, luteinizing hormone, and testosterone, thereby affecting folliculogenesis and spermatogenesis. Additionally, the metabolism and absorption of vitamins can also impact spermatogenesis through the gut-testis axis. As the relationship between the gut microbiota and reproductive diseases becomes clearer, targeted regulation of the gut microbiota can be employed to address reproductive system issues in both humans and animals. This article discusses the regulation of the gut microbiota and intestinal immune function through microecological preparations, fecal microbiota transplantation, and drug therapy to treat reproductive diseases. Microbial preparations and drug therapy can help maintain the intestinal barrier and reduce chronic inflammation. Fecal microbiota transplantation involves transferring feces from healthy individuals into the recipient’s intestine, enhancing mucosal integrity and increasing microbial diversity. This article also delves into the underlying mechanisms by which the gut microbiota influences reproductive capacity through the gut-gonadal axis and explores the latest research in diagnosing and treating reproductive diseases using gut microbiota. The goal is to restore reproductive capacity by targeting the regulation of the gut microbiota. While the gut microbiota holds promise as a therapeutic target for reproductive diseases, several challenges remain. First, research on the association between gut microbiota and reproductive diseases is insufficient to establish a clear causal relationship, which is essential for proposing effective therapeutic methods targeting the gut microbiota. Second, although gut microbiota metabolites can influence lipid, glucose, and hormone synthesis and metabolism via various signaling pathways—thereby indirectly affecting ovarian and testicular function—more in-depth research is required to understand the direct effects of these metabolites on germ cells or granulosa cells. Lastly, the specific efficacy of gut microbiota in treating reproductive diseases is influenced by multiple factors, necessitating further mechanistic research and clinical studies to validate and optimize treatment regimens.
5.The Role and Mechanism of Circadian Rhythm Regulation in Skin Tissue Regeneration
Ya-Qi ZHAO ; Lin-Lin ZHANG ; Xiao-Meng MA ; Zhen-Kai JIN ; Kun LI ; Min WANG
Progress in Biochemistry and Biophysics 2025;52(5):1165-1178
Circadian rhythm is an endogenous biological clock mechanism that enables organisms to adapt to the earth’s alternation of day and night. It plays a fundamental role in regulating physiological functions and behavioral patterns, such as sleep, feeding, hormone levels and body temperature. By aligning these processes with environmental changes, circadian rhythm plays a pivotal role in maintaining homeostasis and promoting optimal health. However, modern lifestyles, characterized by irregular work schedules and pervasive exposure to artificial light, have disrupted these rhythms for many individuals. Such disruptions have been linked to a variety of health problems, including sleep disorders, metabolic syndromes, cardiovascular diseases, and immune dysfunction, underscoring the critical role of circadian rhythm in human health. Among the numerous systems influenced by circadian rhythm, the skin—a multifunctional organ and the largest by surface area—is particularly noteworthy. As the body’s first line of defense against environmental insults such as UV radiation, pollutants, and pathogens, the skin is highly affected by changes in circadian rhythm. Circadian rhythm regulates multiple skin-related processes, including cyclic changes in cell proliferation, differentiation, and apoptosis, as well as DNA repair mechanisms and antioxidant defenses. For instance, studies have shown that keratinocyte proliferation peaks during the night, coinciding with reduced environmental stress, while DNA repair mechanisms are most active during the day to counteract UV-induced damage. This temporal coordination highlights the critical role of circadian rhythms in preserving skin integrity and function. Beyond maintaining homeostasis, circadian rhythm is also pivotal in the skin’s repair and regeneration processes following injury. Skin regeneration is a complex, multi-stage process involving hemostasis, inflammation, proliferation, and remodeling, all of which are influenced by circadian regulation. Key cellular activities, such as fibroblast migration, keratinocyte activation, and extracellular matrix remodeling, are modulated by the circadian clock, ensuring that repair processes occur with optimal efficiency. Additionally, circadian rhythm regulates the secretion of cytokines and growth factors, which are critical for coordinating cellular communication and orchestrating tissue regeneration. Disruptions to these rhythms can impair the repair process, leading to delayed wound healing, increased scarring, or chronic inflammatory conditions. The aim of this review is to synthesize recent information on the interactions between circadian rhythms and skin physiology, with a particular focus on skin tissue repair and regeneration. Molecular mechanisms of circadian regulation in skin cells, including the role of core clock genes such as Clock, Bmal1, Per and Cry. These genes control the expression of downstream effectors involved in cell cycle regulation, DNA repair, oxidative stress response and inflammatory pathways. By understanding how these mechanisms operate in healthy and diseased states, we can discover new insights into the temporal dynamics of skin regeneration. In addition, by exploring the therapeutic potential of circadian biology in enhancing skin repair and regeneration, strategies such as topical medications that can be applied in a time-limited manner, phototherapy that is synchronized with circadian rhythms, and pharmacological modulation of clock genes are expected to optimize clinical outcomes. Interventions based on the skin’s natural rhythms can provide a personalized and efficient approach to promote skin regeneration and recovery. This review not only introduces the important role of circadian rhythms in skin biology, but also provides a new idea for future innovative therapies and regenerative medicine based on circadian rhythms.
6.Effect of fibroblast growth factor receptor 1 inhibitor on bone destruction in rats with collagen-induced arthritis
Haihui HAN ; Xiaohui MENG ; Bo XU ; Lei RAN ; Qi SHI ; Lianbo XIAO
Chinese Journal of Tissue Engineering Research 2025;29(5):968-977
BACKGROUND:Preliminary research by our group suggests that targeting fibroblast growth factor receptor 1(FGFR1)may be an effective strategy for treating RA. OBJECTIVE:To investigate the effects of an FGFR1 inhibitor(PD173074)on bone destruction in rats with collagen-induced arthritis. METHODS:Twenty-five female Sprague-Dawley rats were randomly divided into five groups:normal control group,model group,methotrexate group,low-dose PD173074 group,and high-dose PD173074 group.Except for the normal control group,rat models of type Ⅱ collagen-induced arthritis were made in each group.After successful modeling,rats were injected intraperitoneally with sterile PBS in the normal and model groups,1.04 mg/kg methotrexate in the methotrexate group,and 5 and 20 mg/kg in the low-dose group and high-dose PD173074 groups,once a week.After 4 weeks of drug administration,clinical symptoms and joint swelling in rats were observed.Micro-CT was used for three-dimensional reconstruction and analysis of the ankle joints.Pathological changes in the ankle joints were observed.Periarticular angiogenesis and the expression of receptor activator of nuclear factor-Κb ligand were detected.The expression levels of p-FGFR1,vascular endothelial growth factor A,and tartrate-resistant acid phosphatase in the synovial membrane were measured.Pathological changes in the liver,spleen,and kidney were observed and liver,spleen,and kidney indices were calculated. RESULTS AND CONCLUSION:PD173074 could alleviate clinical symptoms and joint swelling,delay bone loss,improve bone structure,reduce synovial invasion and cartilage bone erosion,reduce the number of periarticular osteoclasts,inhibit angiogenesis in synovial tissues,reduce the expression of receptor activator of nuclear factor-Κb ligand,and inhibit the expression of FGFR1 phosphorylated protein,tartrate-resistant acid phosphatase and vascular endothelial growth factor A.Pathologic observation of the liver,spleen and kidney in rats showed no obvious toxic side effects after PD173074 treatment.To conclude,the FGFR1 inhibitor can delay the progression of joint inflammation and bone destruction and inhibit angiogenesis in the rat model of type Ⅱ collagen-induced arthritis.The therapeutic effect of PD173074 has been preliminarily validated in the type Ⅱ collagen-induced arthritis model and may act by inhibiting FGFR1 phosphorylation,which provides a direction for the search of new therapeutic targets for rheumatoid arthritis.
7.Targeting fibroblast growth factor receptor 1 signaling to improve bone destruction in rheumatoid arthritis
Haihui HAN ; Lei RAN ; Xiaohui MENG ; Pengfei XIN ; Zheng XIANG ; Yanqin BIAN ; Qi SHI ; Lianbo XIAO
Chinese Journal of Tissue Engineering Research 2025;29(9):1905-1912
BACKGROUND:Although researchers have noted that fibroblast growth factor receptor 1 shows great potential in rheumatoid arthritis bone destruction,there is a lack of reviews related to the potential mechanisms of fibroblast growth factor receptor 1 in rheumatoid arthritis bone destruction. OBJECTIVE:To comprehensively analyze the mechanism of fibroblast growth factor receptor 1 in bone destruction in rheumatoid arthritis by reviewing the relevant literature at both home and abroad. METHODS:We searched the CNKI database using the Chinese search terms"fibroblast growth factor receptor 1,rheumatoid arthritis,bone destruction,bone cells,osteoblasts,osteoclasts,chondrocytes,macrophages,synovial fibroblasts,T cells,vascular endothelial cells."PubMed database was searched using the English search terms"fibroblast growth factor receptor 1,rheumatoid arthritis,bone destruction,osteocytes,osteoblasts,osteoclasts,chondrocytes,macrophages,synovial fibroblasts,T cells,endothelial cells."The search period focused on April 1992 to January 2024.After screening the literature by reading titles,abstracts,and full texts,a total of 82 articles were finally included for review according to inclusion and exclusion criteria. RESULTS AND CONCLUSION:Fibroblast growth factor receptor 1 was found to be widely expressed in bone tissue-associated cells,including osteoblasts,osteoclasts,and osteoclasts.Fibroblast growth factor receptor 1 affects bone remodeling and homeostasis by regulating the function of these cells,as well as promoting the onset and progression of bone destruction in rheumatoid arthritis.Fibroblast growth factor receptor 1 is involved in the inflammatory response of synovial fibroblasts and macrophages and regulates angiogenesis of endothelial cells in synovial tissues.Fibroblast growth factor receptor 1 promotes bone destruction in several ways.Fibroblast growth factor receptor 1 may be a potential causative agent of bone destruction in rheumatoid arthritis and provides a reference for further research on its therapeutic targets.
8.Pharmacological effect and mechanism of tannic acids in Paeoniae Radix Alba.
Jia-Xin DIAO ; Qi-Tong ZHENG ; Meng-Yao CHEN ; Jiang-Chuan HONG ; Min HAO ; Qing-Mei FENG ; Jun-Qi HU ; Xia-Nan SANG ; Gang CAO
China Journal of Chinese Materia Medica 2025;50(6):1471-1483
The chemical composition of Paeoniae Radix Alba(PRA) is complex, with primary secondary metabolites including monoterpenoids, tannins, triterpenoids, and flavonoids. In previous studies on the material basis of PRA, it was found that, in addition to the widely studied characteristic monoterpene glycosides, tannic acid components also play an important role in the efficacy of PRA. However, their pharmacological effects have not been thoroughly investigated. This paper reviews the tannic acid components in PRA, including pentagaloyl glucose(PGG), tetragaloyl glucose(TGG), trigaloyl glucose(TriGG), and gallic acid, along with their structures, properties, and characteristics to provide a detailed discussion of their pharmacological activities and related mechanisms, aiming to offer a theoretical basis for the material basis research and clinical application of PRA.
Paeonia/chemistry*
;
Tannins/chemistry*
;
Humans
;
Drugs, Chinese Herbal/chemistry*
;
Animals
;
Plant Extracts
9.Bioinformatics analysis of efferocytosis-related genes in diabetic kidney disease and screening of targeted traditional Chinese medicine.
Yi KANG ; Qian JIN ; Xue-Zhe WANG ; Meng-Qi ZHOU ; Hui-Juan ZHENG ; Dan-Wen LI ; Jie LYU ; Yao-Xian WANG
China Journal of Chinese Materia Medica 2025;50(14):4037-4052
This study employed bioinformatics to screen the feature genes related to efferocytosis in diabetic kidney disease(DKD) and explores traditional Chinese medicine(TCM) regulating these feature genes. The GSE96804 and GSE30528 datasets were integrated as the training set, and the intersection of differentially expressed genes and efferocytosis-related genes(ERGs) was identified as DKD-ERGs. Subsequently, correlation analysis, protein-protein interaction(PPI) network construction, enrichment analysis, and immune infiltration analysis were performed. Consensus clustering was conducted on DKD patients based on the expression levels of DKD-ERGs, and the expression levels, immune infiltration characteristics, and gene set variations between different subtypes were explored. Eight machine learning models were constructed and their prediction performance was evaluated. The best-performing model was evaluated by nomograms, calibration curves, and external datasets, followed by the identification of efferocytosis-related feature genes associated with DKD. Finally, potential TCMs that can regulate these feature genes were predicted. The results showed that the training set contained 640 differentially expressed genes, and after intersecting with ERGs, 12 DKD-ERGs were obtained, which demonstrated mutual regulation and immune modulation effects. Consensus clustering divided DKD into two subtypes, C1 and C2. The support vector machine(SVM) model had the best performance, predicting that growth arrest-specific protein 6(GAS6), S100 calcium-binding protein A9(S100A9), C-X3-C motif chemokine ligand 1(CX3CL1), 5'-nucleotidase(NT5E), and interleukin 33(IL33) were the feature genes of DKD. Potential TCMs with therapeutic effects included Astragali Radix, Trionycis Carapax, Sargassum, Rhei Radix et Rhizoma, Curcumae Radix, and Alismatis Rhizoma, which mainly function to clear heat, replenish deficiency, activate blood, resolve stasis, and promote urination and drain dampness. Molecular docking revealed that the key components of these TCMs, including β-sitosterol, quercetin, and sitosterol, exhibited good binding activity with the five target genes. These results indicated that efferocytosis played a crucial role in the development and progression of DKD. The feature genes closely related to both DKD and efferocytosis, such as GAS6, S100A9, CX3CL1, NT5E, and IL33, were identified. TCMs such as Astragali Radix, Trionycis Carapa, Sargassum, Rhei Radix et Rhizoma, Curcumae Radix, and Alismatis Rhizoma may provide a new therapeutic strategy for DKD by regulating efferocytosis.
Humans
;
Computational Biology
;
Diabetic Nephropathies/physiopathology*
;
Protein Interaction Maps
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal
;
Phagocytosis/genetics*
;
Efferocytosis
10.Effects of combined use of active ingredients in Buyang Huanwu Decoction on oxygen-glucose deprivation/reglucose-reoxygenation-induced inflammation and oxidative stress of BV2 cells.
Tian-Qing XIA ; Ying CHEN ; Jian-Lin HUA ; Qin SU ; Cun-Yan DAN ; Meng-Wei RONG ; Shi-Ning GE ; Hong GUO ; Bao-Guo XIAO ; Jie-Zhong YU ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(14):3835-3846
This study aims to explore the effects and action mechanisms of the active ingredients in Buyang Huanwu Decoction(BYHWD), namely tetramethylpyrazine(TMP) and hydroxy-safflor yellow A(HSYA), on oxygen-glucose deprivation/reglucose-reoxygenation(OGD/R)-induced inflammation and oxidative stress of microglia(MG). Network pharmacology was used to screen the effective monomer ingredients of BYHWD and determine the safe concentration range for each component. Inflammation and oxidative stress models were established to further screen the best ingredient combination and optimal concentration ratio with the most effective anti-inflammatory and antioxidant effects. OGD/R BV2 cell models were constructed, and BV2 cells in the logarithmic growth phase were divided into a normal group, a model group, an HSYA group, a TMP group, and an HSYA + TMP group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory cytokines such as interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6). Oxidative stress markers, including superoxide dismutase(SOD), nitric oxide(NO), and malondialdehyde(MDA), were also measured. Western blot was used to analyze the protein expression of both inflammation-related pathway [Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)] and oxidative stress-related pathway [nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)]. Immunofluorescence was used to assess the expression of proteins such as inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1). The most effective ingredients for anti-inflammatory and antioxidant effects in BYHWD were TMP and HSYA. Compared to the normal group, the model group showed significantly increased levels of IL-1β, TNF-α, IL-6, NO, and MDA, along with significantly higher protein expression of NF-κB, TLR4, Nrf2, and HO-1 and significantly lower SOD levels. The differences between the two groups were statistically significant. Compared to the model group, both the HSYA group and the TMP group showed significantly reduced levels of IL-1β, TNF-α, IL-6, NO, and MDA, lower expression of NF-κB and TLR4 proteins, higher levels of SOD, and significantly increased protein expression of Nrf2 and HO-1. Additionally, the expression of the M1-type MG marker iNOS was significantly reduced, while the expression of the M2-type MG marker Arg-1 was significantly increased. The results of the HSYA group and the TMP group had statistically significant differences from those of the model group. Compared to the HSYA group and the TMP group, the HSYA + TMP group showed further significant reductions in IL-1β, TNF-α, IL-6, NO, and MDA levels, along with significant reductions in NF-κB and TLR4 protein expression, an increase in SOD levels, and elevated Nrf2 and HO-1 protein expression. Additionally, the expression of the M1-type MG marker iNOS was reduced, while the M2-type MG marker Arg-1 expression increased significantly in the HSYA + TMP group compared to the TMP or HSYA group. The differences in the results were statistically significant between the HSYA + TMP group and the TMP or HSYA group. The findings indicated that the combined use of HSYA and TMP, the active ingredients of BYHWD, can effectively inhibit OGD/R-induced inflammation and oxidative stress of MG, showing superior effects compared to the individual use of either component.
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Glucose/metabolism*
;
Cell Line
;
Inflammation/genetics*
;
Oxygen/metabolism*
;
Pyrazines/pharmacology*
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/immunology*
;
NF-kappa B/immunology*
;
Toll-Like Receptor 4/immunology*
;
Anti-Inflammatory Agents/pharmacology*
;
Humans

Result Analysis
Print
Save
E-mail