1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.Panax notoginseng saponins regulate differential miRNA expression in osteoclast exosomes and inhibit ferroptosis in osteoblasts
Hongcheng TAO ; Ping ZENG ; Jinfu LIU ; Zhao TIAN ; Qiang DING ; Chaohui LI ; Jianjie WEI ; Hao LI
Chinese Journal of Tissue Engineering Research 2025;29(19):4011-4021
BACKGROUND:Steroid-induced femoral head necrosis is mostly caused by long-term and extensive use of hormones,but its specific pathogenesis is not yet clear and needs further study. OBJECTIVE:To screen out the differential miRNAs in osteoclast exosomes after the intervention of Panax notoginseng saponins,and on this basis,to further construct an osteogenic-related ferroptosis regulatory network to explore the potential mechanism and research direction of steroid-induced osteonecrosis of the femoral head. METHODS:MTT assay was used to detect the toxic effects of different concentrations of dexamethasone and different mass concentrations of Panax notoginseng saponins on Raw264.7 cell line.Tartrate resistant acid phosphatase staining and TUNEL assay were used to detect the effects of Panax notoginseng saponins on osteoclast inhibition and apoptosis.Exosomes were extracted from cultured osteoclasts with Panax notoginseng saponins intervention.Exosomes from different groups were sequenced to identify differentially expressed miRNAs.CytoScape 3.9.1 was used to construct and visualize the regulatory network between differentially expressed miRNAs and mRNAs.Candidate mRNAs were screened by GO analysis and KEGG analysis.Finally,the differential genes related to ferroptosis were screened out,and the regulatory network of ferroptosis-related genes was constructed. RESULTS AND CONCLUSION:(1)The concentration of dexamethasone(0.1 μmol/L)and Panax notoginseng saponins(1 736.85 μg/mL)suitable for intervention of Raw264.7 cells was determined by MTT assay.(2)Panax notoginseng saponins had an inhibitory effect on osteoclasts and could promote their apoptosis.(3)Totally 20 differentially expressed miRNAs were identified from osteoclast-derived exosome samples,and 11 differentially expressed miRNAs related to osteogenesis were predicted by target mRNAs.The regulatory networks of 4 up-regulated differentially expressed miRNAs corresponding to 155 down-regulated candidate mRNAs and 7 down-regulated differentially expressed miRNAs corresponding to 238 up-regulated candidate mRNAs were constructed.(4)Twenty-four genes related to ferroptosis were screened out from the differential genes.Finally,12 networks were constructed(miR-98-5p/PTGS2,miR-23b-3p/PTGS2,miR-425-5p/TFRC,miR-133a-3p/TFRC,miR-185-5p/TFRC,miR-23b-3p/NFE2L2,miR-23b-3p/LAMP2,miR-98-5p/LAMP2,miR-182-5p/LAMP2,miR-182-5p/TLR4,miR-23b-3p/ZFP36,and miR-182-5p/ZFP36).These results indicate that Panax notoginseng saponins may regulate osteoblast ferroptosis by regulating the expression of miRNAs derived from osteoclast exosomes,thus providing a new idea for the study of the mechanism of steroid-induced femoral head necrosis.
3.Study of adsorption of coated aldehyde oxy-starch on the indexes of renal failure
Qian WU ; Cai-fen WANG ; Ning-ning PENG ; Qin NIE ; Tian-fu LI ; Jian-yu LIU ; Xiang-yi SONG ; Jian LIU ; Su-ping WU ; Ji-wen ZHANG ; Li-xin SUN
Acta Pharmaceutica Sinica 2025;60(2):498-505
The accumulation of uremic toxins such as urea nitrogen, blood creatinine, and uric acid of patients with renal failure
7.Current status of cognition and skin care behavior in adolescent patients with acne: A survey in China.
Jing TIAN ; Hong SHU ; Qiufang QIAN ; Zhong SHEN ; Chunyu ZHAO ; Li SONG ; Ping LI ; Xiuping HAN ; Hua QIAN ; Jinping CHEN ; Hua WANG ; Lin MA ; Yuan LIANG
Chinese Medical Journal 2024;137(4):476-477
8.Elemene Antitumor Drugs Development Based on "Molecular Compatibility Theory" and Clinical Application: A Retrospective and Prospective Outlook.
Xiao-Ying JIANG ; Li-Ping SHI ; Jun-Long ZHU ; Ren-Ren BAI ; Tian XIE
Chinese journal of integrative medicine 2024;30(1):62-74
Elemene, derived from Curcuma wenyujin, one of the "8 famous genuine medicinal materials of Zhejiang province," exhibits remarkable antitumor activity. It has gained wide recognition in clinical practice for effectiveness on tumors. Dr. XIE Tian, introduced the innovative concept of "molecular compatibility theory" by combining Chinese medicine principles, specifically the "monarch, minister, assistant, and envoy" theory, with modern biomedical technology. This groundbreaking approach, along with a systematic analysis of Chinese medicine and modern biomedical knowledge, led to the development of elemene nanoliposome formulations. These novel formulations offer numerous advantages, including low toxicity, well-defined composition, synergistic effects on multiple targets, and excellent biocompatibility. Following the principles of the "molecular compatibility theory", further exploration of cancer treatment strategies and methods based on elemene was undertaken. This comprehensive review consolidates the current understanding of elemene's potential antitumor mechanisms, recent clinical investigations, advancements in drug delivery systems, and structural modifications. The ultimate goal of this review is to establish a solid theoretical foundation for researchers, empowering them to develop more effective antitumor drugs based on the principles of "molecular compatibility theory".
Humans
;
Retrospective Studies
;
Antineoplastic Agents/therapeutic use*
;
Neoplasms/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Sesquiterpenes/therapeutic use*
9.Effect of Gegen Qinliantang on Fecal Short-chain Fatty Acids in Rats with Antibiotic-associated Diarrhea Based on Targeted Metabonomics
Gang SU ; Guangyong YANG ; Xue HAN ; Qiumei TANG ; Weiyi TIAN ; Wenjia WANG ; Ping WANG ; Xiaohua TU ; Guangzhi HE
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(7):189-196
ObjectiveTo explore the impact of Gegen Qinliantang(GQT) on the fecal short-chain fatty acids(SCFAs) metabolism in antibiotic-associated diarrhea(AAD) through targeted metabolomics. MethodA total of 240 SD rats were randomly divided into six groups(n=40, half male and half female), including blank group, model group, bifidobiogen group(0.15 g·kg-1), and GQT high-, medium-, and low-dose groups(10.08, 5.04, 2.52 g·kg-1), except for the blank group, clindamycin(250 mg·kg-1) was given to all groups by gavage for modeling every day for 7 d. After successful modeling, each administered group was gavaged with the corresponding dose of the drug, and the blank and model groups were gavaged with an equal volume of normal saline solution, 1 time/d, for 14 d. At 0, 3, 7, 14 d after the drug intervention, eight rats were randomly selected from each group, respectively. Gas chromatography-time-of-flight mass spectrometry(GC-TOF-MS) was used to perform targeted metabolomic analysis of SCFAs in the feces of rats, and partial least squares-discriminant analysis(PLS-DA) was applied to compare the differences in metabolic profiles between groups at different treatment times, and to compare the changes in the contents of SCFAs in rat feces between groups. ResultPLS-DA results showed that the blank group could be clearly distinguishable from the model group, with GQT exhibiting a closer proximity to the blank group after 7 d of treatment. After further analyzing the composition of SCFAs, it was found that the proportion of acetic acid increased and the proportions of butyric acid, valeric acid, hexanoic acid and isovaleric acid decreased in the model group compared with the blank group. After the treatment with GQT, the proportions of butyric acid, isobutyric acid, valeric acid, and isovaleric acid increased, and the proportions of acetic acid, propionic acid and caproic acid decreased. Subsequent differential analysis revealed that GQT could significantly improve the content of butyric acid, and had a certain retrogressive effect on the contents of valeric acid and hexanoic acid. ConclusionThe medium dose group of GQT can improve the contents of SCFAs in AAD feces after 7 days of treatment, which may be related to the improvement of the composition ratio of SCFAs and the contents of butyric acid, valeric acid and caproic acid.

Result Analysis
Print
Save
E-mail