1.Mechanism of Zuoguiwan in Inhibiting Osteoclast Activation Induced by Breast Cancer via Regulating p38 MAPK/ERK Signaling Pathway
Jianjiang FU ; Yinlong MEI ; Junchao MA ; Xiaocui ZHU ; Wei WANG ; Hong LYU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):1-9
ObjectiveTo investigate the effects of Zuoguiwan on osteoclast activation induced by breast cancer and its mechanism. MethodsTo simulate breast cancer-induced osteoclastic bone metastasis, RAW264.7 cells were cultured in conditioned medium containing 50% supernatant of MDA-MB-231 breast cancer cells. The dosages of Zuoguiwan used in the experiment were sera containing 5% and 10% Zuoguiwan. Tartrate-resistant acid phosphatase (TRAP) staining was used to detect osteoclast activation. Enzyme-linked immunosorbent assay (ELISA) was used to measure Cathepsin K secretion from RAW264.7 cells. Real-time quantitative polymerase chain reaction (PCR) was used to detect the mRNA expression levels of osteocalcin (OCN) and bone sialoprotein (BSP). Immunoprecipitation was employed to detect the interaction between Runt-related transcription factor 2 (Runx2) and core binding factor β subunit (CBF-β). Western blot was used to assess the protein expression of Runx2, phosphorylated Runx2 (p-Runx2), extracellular signal-regulated kinases 1/2 (ERK1/2), p-ERK1/2, p38 mitogen-activated protein kinase (MAPK), p-p38 MAPK, and CBF-β. ResultsCompared with the blank group, the MDA-MB-231 cell supernatant group showed a significant increase in TRAP-positive cell counts and Cathepsin K secretion. Meanwhile, the expression levels of p-Runx2, Runx2-CBF-β interaction, BSP and OCN mRNA, p-p38 MAPK, and p-ERK1/2 proteins were significantly decreased (P<0.01). Compared with the MDA-MB-231 cell supernatant group, Zuoguiwan-containing sera significantly reduced TRAP-positive cell counts and Cathepsin K secretion (P<0.01), significantly increased p-Runx2, BSP and OCN mRNA expression, as well as p-p38 MAPK and p-ERK1/2 protein levels, and promoted the interaction between Runx2 and CBF-β (P<0.01). No significant change in Runx2 expression was observed. Compared to the blank group, the BVD-523 group showed significantly lower expression of p-p38 MAPK and p-ERK1/2 proteins (P<0.01). Compared with the BVD-523 group, both low and high concentration Zuoguiwan-containing sera groups showed significantly higher p-p38 MAPK expression (P<0.01), and the high concentration Zuoguiwan group also exhibited a significant increase in p-ERK1/2 expression (P<0.01), while no statistical difference was found in the low-dose group. ConclusionZuoguiwan inhibits osteoclast activation by inducing phosphorylation of the key transcriptional regulator Runx2 in intra-osteoclast bone formation, and this process is closely associated with the activation of the p38 MAPK/ERK signaling pathway.
2.Mechanism of Shaoyaotang in Modulating MDSCs-related Immunosuppressive Microenvironment in Prevention and Treatment of Colitis-associated Carcinogenesis
Xue CHEN ; Chenglei WANG ; Bingwei YANG ; Haoyu ZHAI ; Ying WU ; Weidong LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):10-19
ObjectiveTo explore the mechanism of Shaoyaotang in the prevention and treatment of colitis-associated carcinogenesis (CAC) based on myeloid-derived suppressor cells (MDSCs)-related immunosuppressive microenvironment. MethodsA total of 140 six-week-old SPF FVB male mice were randomly divided into seven groups: Blank group, Shaoyaotang without model group (7.12 g·kg-1), model group, sulfasalazine group (0.52 g·kg-1), Shaoyaotang low-dose group (3.56 g·kg-1), Shaoyaotang medium-dose group (7.12 g·kg-1) and Shaoyaotang high-dose group (14.24 g·kg-1), with 20 mice in each group. The blank control group and the Shaoyaotang without model group received a single intraperitoneal injection of physiological saline (10 mg·kg-1), while the other five groups were given a single intraperitoneal injection of azoxymethane (AOM) (10 mg·kg-1). After 1 week, the mice were given drinking water containing 2% dextran sulfate sodium (DSS) for 1 week, followed by normal drinking water for 2 weeks. This cycle was repeated three times over a total period of 14 weeks to establish the CAC mouse model. Each group was administered gavage once daily for 2 weeks starting on the 14th day of the experiment, followed by three times a week until the end of the experiment. The body weight of the mice was recorded weekly. Mice were sacrificed on the 28th and 98th days of the experiment. After dissection, the colon length, colon weight, spleen weight, tumor size, and tumor number were measured. Hematoxylin and eosin (HE) staining was used to assess the pathological morphology of colon tumor tissue. Flow cytometry was used to detect MDSCs, regulatory T cells (Tregs), CD4+ T cells, CD8+ T cells, and the CD4+/CD8+ T cell ratio in the spleen. Immunohistochemistry was used to detect the expression levels of programmed cell death protein-1 (PD-1), programmed cell death ligand 1 (PD-L1), phosphorylated AMP-activated protein kinase (p-AMPK), phosphorylated nuclear factor-κB (p-NF-κB), and hypoxia-inducible factor 1α (HIF-1α) in the colon tissue. ResultsOn day 14, compared with the blank group, the body weight of the model group was significantly reduced (P<0.01), reaching its lowest point on day 28 (23.39 ± 0.95 ) g. On days 28 and 98, compared with the blank group, the colon length in the model group was significantly shortened (P<0.01), the colon index significantly increased (P<0.01), the spleen index significantly increased (P<0.01), and the tumor load significantly increased (P<0.01). HE staining showed that in the model group, tumor cells, a large number of inflammatory cell infiltrates, goblet cell disappearance, and crypt loss were observed. In each dose group of Shaoyaotang, the damage to the colonic mucosa, inflammatory cell infiltration, and crypt structure destruction were alleviated. Compared with the model group, the body weight of mice in each dose group of Shaoyaotang increased. On day 98, the colon length was significantly increased (P<0.01), the colon index significantly decreased (P<0.01), the spleen index significantly decreased (P<0.01), and the tumor burden significantly decreased (P<0.01) in each Shaoyaotang dose group. On days 28 and 98, MDSCs and Tregs in the spleen of the medium- and high-dose Shaoyaotang groups were significantly reduced (P<0.01), while CD4+ T cells and the CD4+/CD8+ T cell ratio were significantly increased (P<0.01). The proportion of CD8+ T cells in the spleen and the expression levels of PD-1 and PD-L1 in the colon tissues of mice in each Shaoyaotang dose group were significantly increased to varying degrees (P<0.05, P<0.01). On days 28 and 98, the expression of p-AMPK-positive cells in the colon tissue of the medium- and high-dose Shaoyaotang groups was significantly increased (P<0.01), while the expression of p-NF-κB and HIF-1α was significantly reduced (P<0.01). ConclusionShaoyaotang can regulate MDSC recruitment and modulate the immune function of T lymphocyte subsets to inhibit the occurrence and development of AOM/DSS-induced CAC in mice. The mechanism may be related to the activation of the AMPK/NF-κB/HIF-1α pathway.
3.Mechanism of Action of Kaixinsan in Ameliorating Alzheimer's Disease
Xiaoming HE ; Xiaotong WANG ; Dongyu MIN ; Xinxin WANG ; Meijia CHENG ; Yongming LIU ; Yetao JU ; Yali YANG ; Changbin YUAN ; Changyang YU ; Li ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):20-29
ObjectiveTo investigate the mechanism of action of Kaixinsan in the treatment of Alzheimer's disease (AD) based on network pharmacology, molecular docking, and animal experimental validation. MethodsThe Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and the Encyclopedia of Traditional Chinese Medicine(ETCM) databases were used to obtain the active ingredients and targets of Kaixinsan. GeneCards, Online Mendelian Inheritance in Man(OMIM), TTD, PharmGKB, and DrugBank databases were used to obtain the relevant targets of AD. The intersection (common targets) of the active ingredient targets of Kaixinsan and the relevant targets of AD was taken, and the network interaction analysis of the common targets was carried out in the STRING database to construct a protein-protein interaction(PPI) network. The CytoNCA plugin within Cytoscape was used to screen out the core targets, and the Metascape platform was used to perform gene ontology(GO) functional enrichment analysis and Kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis. The “drug-active ingredient-target” interaction network was constructed with the help of Cytoscape 3.8.2, and AutoDock Vina was used for molecular docking. Scopolamine (SCOP) was utilized for modeling and injected intraperitoneally once daily. Thirty-two male C57/BL6 mice were randomly divided into blank control (CON) group (0.9% NaCl, n=8), model (SCOP) group (3 mg·kg-1·d-1, n=8), positive control group (3 mg·kg-1·d-1 of SCOP+3 mg·kg-1·d-1 of Donepezil, n=8), and Kaixinsan group (3 mg·kg-1·d-1 of SCOP+6.5 g·kg-1·d-1 of Kaixinsan, n=8). Mice in each group were administered with 0.9% NaCl, Kaixinsan, or Donepezil by gavage twice a day for 14 days. Morris water maze experiment was used to observe the learning memory ability of mice. Hematoxylin-eosin (HE) staining method was used to observe the pathological changes in the CA1 area of the mouse hippocampus. Enzyme linked immunosorbent assay(ELISA) was used to determine the serum acetylcholine (ACh) and acetylcholinesterase (AChE) contents of mice. Western blot method was used to detect the protein expression levels of signal transducer and activator of transcription 3(STAT3) and nuclear transcription factor(NF)-κB p65 in the hippocampus of mice. ResultsA total of 73 active ingredients of Kaixinsan were obtained, and 578 potential targets (common targets) of Kaixinsan for the treatment of AD were screened out. Key active ingredients included kaempferol, gijugliflozin, etc.. Potential core targets were STAT3, NF-κB p65, et al. GO functional enrichment analysis obtained 3 124 biological functions, 254 cellular building blocks, and 461 molecular functions. KEGG pathway enrichment obtained 248 pathways, mainly involving cancer-related pathways, TRP pathway, cyclic adenosine monophosphate(cAMP) pathway, and NF-κB pathway. Molecular docking showed that the binding of the key active ingredients to the target targets was more stable. Morris water maze experiment indicated that Kaixinsan could improve the learning memory ability of SCOP-induced mice. HE staining and ELISA results showed that Kaixinsan had an ameliorating effect on central nerve injury in mice. Western blot test indicated that Kaixinsan had a down-regulating effect on the levels of NF-κB p65 phosphorylation and STAT3 phosphorylation in the hippocampal tissue of mice in the SCOP model. ConclusionKaixinsan can improve the cognitive impairment function in SCOP model mice and may reduce hippocampal neuronal damage and thus play a therapeutic role in the treatment of AD by regulating NF-κB p65, STAT3, and other targets involved in the NF-κB signaling pathway.
4.Mechanism of Xielitang Against Ulcerative Colitis in Mice Based on "Intestinal Flora-bile Acid" Axis
Xiaotian WANG ; Yaning BIAO ; Yixin ZHANG ; Jian CHEN ; Ya GAO ; Yufang ZHANG ; Muqing ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):30-38
ObjectiveTo investigate the protective effect of Xielitang on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice and its possible mechanism. MethodsDSS was used to establish UC model. Sixty mice were randomly divided into a normal group, a model group, a sulfasalazine group (0.6 g·kg-1), and low-, medium-, and high-dose Xielitang groups (1.67, 3.34, 6.68 g·kg-1). After treatment for 42 d, the colon length was recorded, and the disease activity index (DAI) score was calculated. Enzyme-linked immunosorbent assay (ELISA) was used to detect the serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10). Hematoxylin-eosin (HE) staining was used to observe the pathomorphological changes of colon. Western blot was used to detect the protein expression of farnesoid X receptor (FXR), small heterodimer partner (SHP), liver receptor homolog-1 (LRH-1), cholesterol 7α-hydroxylase (CYP7A1), and fibroblast growth factor receptor 4 (FGFR4) in liver and FXR, sodium-dependent bile acid transporter (ASBT), and fibroblast growth factor 15 (FGF15) in ileum. 16S rRNA sequencing was used to analyze the intestinal flora. Moreover, ultra-high performance liquid chromatography–tandem mass spectrometry was used to detect the bile acid content. ResultsCompared with the normal group, the model group showed significantly decreased colon length, IL-10 content, α-diversity index, abundance of Firmicutes and Lactobacillus, and content of deoxycholic acid (DCA) and lithocholic acid (LCA) (P<0.01), significantly increased DAI score, IL-6 and TNF-α content, abundance of Bacteroidetes, and the content of cholic acid (CA), chenodeoxycholic acid (CDCA), and taurocholic acid (TCA) (P<0.05, P<0.01), significantly down-regulated protein expression of FXR, SHP, and FGFR4 in liver and FXR, ASBT, and FGF15 in ileum (P<0.01), and significantly up-regulated protein expression of LRH-1 and CYP7A1 in liver (P<0.01). In addition, the structure of colonic mucosa was destroyed, and inflammatory cells infiltrated in the model group. Compared with the model group, Xielitang could significantly increase the colon length, IL-10 content, α-diversity index, the abundance of Firmicutes and Lactobacillus, and DCA and LCA content (P<0.05, P<0.01), decrease DAI score, abundance of Bacteroidetes, and the content of IL-6, TNF-α, CA, CDCA, and TCA (P<0.01), up-regulate the protein expression of FXR, SHP, and FGFR4 in liver and FXR, ASBT, and FGF15 in ileum (P<0.01), and down-regulate the protein expression of LRH-1 and CYP7A1 in liver (P<0.01). The pathological damage of colonic mucosa was obviously alleviated. ConclusionXielitang protects against UC probably by regulating the "intestinal microbiota-bile acid" axis, regulating intestinal flora imbalance, and maintaining bile acid homeostasis.
5.Therapeutic Effect and Mechanism of Shentong Zhuyutang Combined with Dilongtang in Treatment of Lumbar Disc Herniation with Qi Stagnation and Blood Stasis Syndrome
Huangsheng TAN ; Yinbo WANG ; Yong HUANG ; Juyi LAI ; Hualong FENG ; Zhiming LAN ; Yuanfei FU ; Yong JIANG ; Shenghua HE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):47-54
ObjectiveTo observe the clinical efficacy of Shentong Zhuyutang combined with Dilongtang in the treatment of lumbar disc herniation (LDH) with Qi stagnation and blood stasis syndrome, and its effect on nucleus pulposus reabsorption and immune-inflammatory factors, exploring its therapeutic mechanism from the perspective of reabsorption. MethodsA total of 120 patients with LDH from the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, treated between June 2020 and January 2023, were randomly divided into the control group (52 cases, with 8 dropouts) and the observation group (49 cases, with 11 dropouts) according to a random number table. The control group received routine treatment, while the observation group was treated with Shentong Zhuyutang combined with Dilongtang in addition to routine treatment. Visual Analogue Scale (VAS), Oswestry Disability Index (ODI), Japanese Orthopaedic Association (JOA) score, and traditional Chinese medicine (TCM) syndrome score were measured before treatment and after 3 courses of treatment. Venous blood samples were collected for the determination of serological indexes. MR examination was performed during the 6-month follow-up to calculate the absorption rate. ResultsAfter treatment, both groups showed significant reductions in VAS, ODI, TCM syndrome score, serum tumor necrosis factor (TNF)-α, matrix metalloproteinase (MMP)-9, and vascular endothelial growth factor (VEGF) levels, and a significant increase in JOA score compared with pre-treatment values (P<0.05). Compared with the control group, the observation group showed significantly lower VAS, ODI, TCM syndrome score, serum TNF-α, MMP-9, and VEGF levels, and a significantly higher JOA score (P<0.05). The proportion of nucleus pulposus reabsorption in the observation group was 57.14% (28/49), significantly higher than 21.15% (11/52) in the control group (χ2=6.161, P<0.05). ConclusionShentong Zhuyutang combined with Dilongtang can effectively relieve pain, improve lumbar function, and alleviate TCM clinical symptoms in LDH patients with Qi stagnation and blood stasis syndrome. Imaging findings suggest that the treatment promotes the reabsorption of nucleus pulposus protrusion, while laboratory testing shows reduced serum levels of TNF-α, MMP-9, and VEGF, which contribute to the rehabilitation of patients.
6.Effect of Shenge Bushen Capsules and Its Polysaccharides and Flavonoids on Precocious Puberty in Young Mice
Hong SUN ; Fan LEI ; Chenggong LI ; Shixian HU ; Weihua WANG ; Bin REN ; Juan HAO ; Rui LUO ; Lijun DU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):95-103
ObjectiveTo explore the effect of Shenge Bushen Capsules (SBC) on sexual development in normal 3-week-old mice. MethodsThe experiment consisted of two parts. In the first part, mice were divided into four groups: The control group and the low, medium, and high-dose SBC groups (234.7, 469.4, 938.7 mg·kg-1, respectively). In the second part, mice were divided into four groups: Control group, Pseudostellariae Radix polysaccharide (PRP) group, total flavonoids group, and SBC group, all receiving a dose of 469.4 mg·kg-1. After 7 days of administration, the vaginal opening of female mice and the descent of testes and scrotum in male mice, as well as the ovarian and testicular organ indices, were observed. After 4 weeks of administration, female and male mice were housed together for 2 days, and the pregnancy rate of females was monitored. After delivery, the pregnant female mice continued receiving the treatment for 4 weeks, and the sexual development of their offspring, including vaginal opening, testicular descent, and organ indices of ovaries and testes, was observed. Serum sex hormones were measured by enzyme-linked immunosorbent assay (ELISA), and the expression of gonadotropin-releasing hormone (GnRH) and growth hormone (GH) proteins in the hypothalamus was assessed by Western blot. ResultsCompared with the control group, there was no significant effect on the vaginal opening of female mice or the descent of testes in male mice after 7 days of SBC administration. After 4 weeks of administration, the pregnancy rate in the low-dose group was significantly reduced (P<0.05), but no significant effects were observed in the other groups. The three doses of SBC did not significantly affect the ovarian or testicular organ indices, and there was no significant upregulation in the expression of GnRH or GH in the hypothalamus. The primary component of SBC, Pseudostellariae Radix polysaccharide, significantly reduced the vaginal opening in female mice after 7 days of administration (P<0.05). After 4 weeks, the serum estradiol levels of non-pregnant female mice were decreased (P<0.05), but there was no significant effect on the expression of GnRH or GH proteins in the hypothalamus of either male or female mice. Additionally, there were no significant effects on precocious puberty indicators, such as vaginal opening and testicular descent, in the offspring mice. ConclusionSBC does not significantly promote precocious puberty in young mice, and it does not have any noticeable effects on the pregnancy rate of adult mice or the sexual development of their offspring.
7.Mechanism of Zuogui Jiangtang Jieyu Prescription Against Damage to Hippocampal Synaptic Microenvironment via Suppressing GluR2/Parkin Signal-mediated Mitophagy in Rats with Diabetes-related Depression
Jian LIU ; Lin LIU ; Xiaoyuan LIN ; Wei LI ; Yuhong WANG ; Hui YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):104-112
ObjectiveTo reveal the mechanism of Zuogui Jiangtang Jieyu prescription against damage to hippocampal synaptic microenvironment via suppressing glutamate receptor 2 (GluR2)/Parkin signal-mediated mitophagy in rats with diabetes-related depression (DD). MethodsEighty male SD rats underwent adaptive feeding for 5 days before the study. Ten rats were randomly assigned to the normal group. The model of DD rats was established with the rest by 2-week high-fat diet + streptozotocin (STZ) tail intravenous injection + 28 days of chronic unpredictable mild stress (CUMS) combined with isolation. The rats were randomly divided into a normal group, a model group, a GluR2 blocker group (5 μg·kg-1), a GluR2 agonist group (10 μg·kg-1), a metformin + fluoxetine group (0.18 g·kg-1 metformin + 1.8 mg·kg-1 fluoxetine), and high- and low-dose Zuogui Jiangtang Jieyu prescription groups (20.52 and 10.26 g·kg-1, respectively). The rats in the GluR2 blocker group and the GluR2 agonist group were continuously injected with CNQX and Cl-HIBO in the dentate gyrus of the hippocampus once a week starting from stress modeling, respectively, while the metformin + fluoxetine group and the high- and low-dose Zuogui Jiangtang Jieyu prescription groups were continuously given intragastric administration for 28 d at the same time of stress modeling. Depression-like behavior was evaluated by open field and forced swimming experiments. The levels of serum insulin and adenosine triphosphate (ATP) in hippocampus were detected by biochemical analysis. The levels of 5-hydroxytryptamine (5-HT) and dopamine (DA) in hippocampus were detected by enzyme-linked immunosorbent assay (ELISA). The autophagosomes of hippocampal neurons were observed by transmission electron microscopy. The morphology and structure of dendrites and spines of hippocampal neurons were evaluated by Golgi staining. Western blot detected the expression levels of GluR2 and Parkin proteins in hippocampus. The expression levels of GluR2, Parkin, regulating synaptic membrane exocytosis protein 3 (RIMS3), and postsynaptic density protein 95 (PSD95) in the dentate gyrus of the hippocampus were detected by immunofluorescence. ResultsCompared with the normal group, the model group exhibited reduced total activity distance in the open field and increased immobility time in forced swimming (P<0.01), lowered levels of serum insulin and ATP, 5-HT, and DA in hippocampus (P<0.01), increased autophagosomes of hippocampal neurons, significantly damaged morphology and structure of dendrites and spines of hippocampal neurons, decreased expression levels of GluR2, RIMS3, and PSD95 in hippocampus, and an increased Parkin expression level (P<0.05, P<0.01). Compared with the model group, the GluR2 blocker group and the GluR2 agonist group showed aggravation and alleviation of the above abnormal changes, respectively (P<0.05, P<0.01). The above depression-like behavior was significantly improved in the high- and low-dose Zuogui Jiangtang Jieyu prescription groups to different degrees. Specifically, the two groups saw elevated levels of serum insulin and ATP, 5-HT, and DA in hippocampus (P<0.05, P<0.01), restrained increase in autophagosomes and damage to morphology and structure of dendrites and spines of hippocampal neurons, up-regulated protein expression levels of GluR2, RIMS3, and PSD95, and down-regulated Parkin expression level (P<0.05, P<0.01). ConclusionZuogui Jiangtong Jieyu prescription can ameliorate the mitophagy-mediated damage to hippocampal synaptic microenvironment in DD rats, the mechanism of which might be related to the regulation of GluR2/Parkin signaling pathway.
8.Gandouling Regulates PI3K/Akt/mTOR Autophagy Signaling Pathway via LncRNA H19 for Treatment of Wilson Disease Liver Fibrosis
Xin YIN ; Han WANG ; Daiping HUA ; Lanting SUN ; Yunyun XU ; Wenming YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):131-138
ObjectiveTo investigate the potential mechanisms and pathways through which Gandouling (GDL) exerts its effects in the treatment of liver fibrosis in Wilson disease. MethodsSixty male SD rats were randomly divided into six groups: the normal group, the model group, the GDL low-, medium-, and high-dose groups (0.24, 0.48, 0.96 g·kg-1), and the penicillamine group (90 mg·kg-1), with 10 rats in each group. A copper-loaded Wilson disease rat model was established by gavage administration of 300 mg·kg-1 copper sulfate pentahydrate to all groups except the normal group. Hematoxylin-eosin (HE) staining and Masson staining were used to observe the pathomorphological changes in the liver. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the levels of hyaluronic acid (HA), laminin (LN), procollagen type-Ⅲ peptide (PC-Ⅲ), and collagen type-Ⅳ (C-Ⅳ). Transmission electron microscopy was used to examine the ultrastructure of liver tissues. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to detect the expression levels of liver tissues and serum exosomal long noncoding RNA H19 (LncRNA H19), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR). Western blot analysis was performed to assess the expression levels of PI3K, Akt, mTOR, and their phosphorylated forms, as well as autophagy-related proteins Beclin1 and microtubule-associated protein 1 light chain 3B (LC3-Ⅱ/LC3-Ⅰ) in liver tissues. Beclin1 and LC3-Ⅱ fluorescence signal intensity was observed by immunofluorescence. ResultsCompared with the normal group, the model group exhibited inflammatory cell infiltration in hepatocytes, unclear nuclear boundaries with cell cleavage and necrosis, and collagen fiber deposition around confluent areas. The levels of HA, LN, PC-Ⅲ, and C-Ⅳ were significantly elevated (P<0.01). Transmission electron microscopy revealed an increased number of autophagic vesicles, with autophagic lysosomes exhibiting a single-layer membrane structure following degradation of most envelopes. Expression levels of Beclin1 and LC3-Ⅱ/LC3-Ⅰ were significantly increased (P<0.01), and fluorescence signals of Beclin1 and LC3-Ⅱ were markedly enhanced. The protein expression levels of PI3K, Akt, mTOR, p-PI3K, p-Akt, and p-mTOR were reduced (P<0.01), while LncRNA H19 expression was increased (P<0.01), and mRNA expression levels of PI3K, Akt, and mTOR were decreased (P<0.01). After treatment with GDL, the degree of liver fibrosis was significantly improved, with decreased levels of HA, LN, PC-Ⅲ, and C-Ⅳ. The number of autophagic vesicles was significantly reduced, and expression levels of Beclin1 and LC3-Ⅱ/LC3-Ⅰ proteins were lower (P<0.01). The fluorescence signals of Beclin1 and LC3-Ⅱ weakened dose-dependently. The protein levels of PI3K, Akt, mTOR, p-PI3K, p-Akt, and p-mTOR were elevated (P<0.01), while the expression level of LncRNA H19 was reduced (P<0.01). Furthermore, the mRNA expression levels of PI3K, Akt, and mTOR increased (P<0.05, P<0.01). ConclusionGDL may alleviate liver fibrosis and reduce liver injury by regulating the PI3K/Akt/mTOR autophagy signaling pathway via LncRNA H19.
9.Sesquiterpene ZH-13 from Aquilariae Lignum Resinatum Improves Neuroinflammation by Regulating JNK Phosphorylation
Ziyu YIN ; Yun GAO ; Junjiao WANG ; Weigang XUE ; Xueping PANG ; Huiting LIU ; Yunfang ZHAO ; Huixia HUO ; Jun LI ; Jiao ZHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):139-145
ObjectiveTo study the pharmacological substances and mechanisms through which sesquiterpene ZH-13 from Aquilariae Lignum Resinatum improves neuroinflammation. MethodsBV-2 microglial cells were stimulated with lipopolysaccharide (LPS) to induce neuroinflammation. The cells were divided into the normal group, the model group, and the ZH-13 low- and high-dose treatment groups (10, 20 μmol·L-1). The model group was treated with 1 μmol·L-1 LPS. Cell viability was assessed using the cell proliferation and activity assay (CCK-8 kit). Nitric oxide (NO) release in the cell supernatant was measured using a nitric oxide kit (Griess method). The mRNA expression levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), and interleukin-6 (IL-6) were detected by real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). The phosphorylation of mitogen-activated protein kinase (MAPK) pathway proteins was assessed by Western blot. ResultsCompared with the model group, ZH-13 dose-dependently reduced NO release from BV-2 cells under LPS stimulation (P<0.05, P<0.01). In the 20 μmol·L-1 ZH-13 treatment group, the mRNA expression levels of IL-1β, TNF-α, iNOS, and IL-6 were significantly reduced compared to the model group (P<0.05, P<0.01). In both the low- and high-dose ZH-13 groups, the expression of the inflammatory factor TNF-α and the phosphorylation of c-Jun N-terminal kinase (JNK) in the upstream MAPK pathway were significantly reduced (P<0.05). After stimulation with the JNK agonist anisomycin (Ani), both low- and high-dose ZH-13 treatment groups showed reduced phosphorylation of JNK proteins compared to the Ani-treated group (P<0.01). ConclusionThe sesquiterpene compound ZH-13 from Aquilariae Lignum Resinatum significantly ameliorates LPS-induced neuroinflammatory responses in BV-2 cells by inhibiting excessive JNK phosphorylation and reducing TNF-α expression. These findings elucidate the pharmacological substances and mechanisms underlying the sedative and calming effects of Aquilariae Lignum Resinatum.
10.Effect of Epimedium brevicornu Ethanol Extract on Aging of Castrated Rats by Intervening in Mesenchymal Adipose-derived Stem Cells
Zuyu MENG ; Haiquan LIU ; Shaozi LIN ; Mei WANG ; Yiyao ZHANG ; Fang LIU ; Menghan LI ; Hongling CHEN ; Jiajia QIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):174-181
ObjectiveTo explore the mechanism by which the ethanol extract of Epimedium brevicornu (EEBM) intervenes in mesenchymal adipose-derived stem cells (ADSCs) to delay aging in castrated rats. MethodsForty-five 3-month-old SPF female SD rats were ovariectomized and randomly divided into model group, ADSCs treatment group, and ADSCs groups treated with low, medium, and high concentrations of EEBM (1, 50, 100 μg·L-1), referred to as the AE low, medium, and high concentration groups, with 9 rats in each group. After tail vein injection of 200 μL of the corresponding stem cell suspension, aging-related indicators including cyclin-dependent kinase inhibitor (p21), tumor suppressor gene (p53), interleukin-6 (IL-6), interleukin-8 (IL-8), superoxide dismutase (SOD), malondialdehyde (MDA), B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), cysteine-aspartic acid protease-3 (Caspase-3), and lipofuscin were measured using enzyme-linked immunosorbent assay (ELISA) and Western blot. ResultsCompared with the model group, the IL-6 content in the AE low, medium, and high concentration groups was significantly decreased (P<0.05). Lipofuscin, MDA, and IL-8 levels in the ADSCs treatment group and AE low, medium, and high concentration groups were significantly reduced (P<0.01), while SOD content was significantly increased (P<0.05, P<0.01). Compared with the ADSCs treatment group, lipofuscin and IL-8 levels in the AE low, medium, and high concentration groups were significantly reduced (P<0.05, P<0.01). The MDA content was significantly decreased in the AE medium concentration group (P<0.01). Compared with the model group, protein levels of p21, p53, Bax, and Caspase-3 in the ADSCs treatment group and AE low, medium, and high concentration groups were significantly reduced (P<0.05, P<0.01), while the Bcl-2 protein level was significantly increased (P<0.01). Compared with the ADSCs treatment group, protein levels of p21, p53, Bax, and Caspase-3 in the AE low, medium, and high concentration groups were significantly reduced (P<0.05, P<0.01), and the Bcl-2 protein level in the AE low concentration group was significantly increased (P<0.01). ConclusionThe results of this experiment show that EEBM-treated ADSCs or ADSCs may delay aging in castrated rats by inhibiting cell apoptosis, reducing cell cycle inhibitors and pro-inflammatory factors, enhancing antioxidant capacity, and reducing oxidative reactions. Moreover, EEBM-treated ADSCs demonstrate stronger anti-aging effects than ADSCs alone. This study provides experimental evidence supporting the clinical use of EEBM to intervene in ADSCs and delay aging.

Result Analysis
Print
Save
E-mail