1.Mechanism of Daotan Xixin Decoction in treating APP/PS1 mice based on high-throughput sequencing technology and bioinformatics analysis.
Bo-Lun CHEN ; Jian-Zheng LU ; Xin-Mei ZHOU ; Xiao-Dong WEN ; Yuan-Jing JIANG ; Ning LUO
China Journal of Chinese Materia Medica 2025;50(2):301-313
This study aims to investigate the therapeutic effect and mechanism of Daotan Xixin Decoction on APP/PS1 mice. Twelve APP/PS1 male mice were randomized into four groups: APP/PS1 and low-, medium-, and high-dose Daotan Xixin Decoction. Three C57BL/6 wild-type mice were used as the control group. The learning and memory abilities of mice in each group were examined by the Morris water maze test. The pathological changes of hippocampal nerve cells were observed by hematoxylin-eosin staining and Nissl staining. Immunohistochemistry was employed to detect the expression of β-amyloid(Aβ)_(1-42) in the hippocampal tissue. The high-dose Daotan Xixin Decoction group with significant therapeutic effects and the model group were selected for high-throughput sequencing. The differentially expressed gene(DEG) analysis, Gene Ontology(GO) analysis, Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis, and Gene Set Variation Analysis(GSVA) were performed on the sequencing results. RT-qPCR and Western blot were conducted to determine the mRNA and protein levels, respectively, of some DEGs. Compared with the APP/PS1 group, Daotan Xixin Decoction at different doses significantly improved the learning and memory abilities of APP/PS1 mice, ameliorated the neuropathological damage in the CA1 region of the hippocampus, increased the number of neurons, and decreased the deposition of Aβ_(1-42) in the brain. A total of 1 240 DEGs were screened out, including 634 genes with up-regulated expression and 606 genes with down-regulated expression. The GO analysis predicted the biological processes including RNA splicing and protein folding, the cellular components including spliceosome complexes and nuclear spots, and the molecular functions including unfolded protein binding and heat shock protein binding. The KEGG pathway enrichment analysis revealed the involvement of neurodegenerative disease pathways, amyotrophic lateral sclerosis, and splicing complexes. Further GSVA pathway enrichment analysis showed that the down-regulated pathways involved nuclear factor-κB(NF-κB)-mediated tumor necrosis factor-α(TNF-α) signaling pathway, UV response, and unfolded protein response, while the up-regulated pathways involved the Wnt/β-catenin signaling pathway. The results of RT-qPCR and Western blot showed that compared with the APP/PS1 group, Daotan Xixin Decoction at different doses down-regulated the mRNA and protein levels of signal transducer and activator of transcription 3(STAT3), NF-κB, and interleukin-6(IL-6) in the hippocampus. In conclusion, Daotan Xixin Decoction can improve the learning and memory abilities of APP/PS1 mice by regulating the STAT3/NF-κB/IL-6 signaling pathway.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Male
;
Alzheimer Disease/metabolism*
;
Computational Biology
;
Mice, Inbred C57BL
;
High-Throughput Nucleotide Sequencing
;
Amyloid beta-Protein Precursor/metabolism*
;
Hippocampus/metabolism*
;
Mice, Transgenic
;
Presenilin-1/metabolism*
;
Humans
;
Memory/drug effects*
;
Maze Learning/drug effects*
;
Amyloid beta-Peptides/genetics*
;
Disease Models, Animal
2.Kaixin San-medicated serum attenuates Aβ_(25-35)-induced injury in SH-SY5Y cells by regulating autophagy.
Han-Wen XING ; Yi YANG ; Yan-Ping YIN ; Lan XIE ; Fang FANG
China Journal of Chinese Materia Medica 2025;50(2):313-321
The aim of this study is to investigate the regulation of Kaixin San-medicated serum(KXS-MS) on autophagy induced by Aβ_(25-35) in SH-SY5Y cells. The SH-SY5Y cell model of Aβ_(25-35)(25 μmol·L~(-1))-induced injury was established, and different concentrations of KXS-MS were added into the culture media of cells, which were then incubated for 24 h. Cell viability was measured by the methyl thiazolyl tetrazolium(MTT) assay. The protein levels of microtubule-associated protein 1 light chain 3(LC3)Ⅰ, LC3Ⅱ, protein kinase B(Akt), p-Akt, mammalian target of rapamycin(mTOR), and p-mTOR were assessed by Western blot. Furthermore, the combination of rapamycin(Rapa)/3-methyladenine(3-MA) and low concentration of KXS-MS was added to the culture medium of SH-SY5Y cells injured by Aβ_(25-35), and the cell viability and the expression levels of the above proteins were determined. The results showed that Aβ_(25-35) decreased the cell viability, up-regulated the expression levels of LC3Ⅱ and LC3Ⅱ/LC3Ⅰ, and down-regulated the expression levels of p-Akt, p-mTOR, p-Akt/Akt, and p-mTOR/mTOR. Compared with the Aβ_(25-35) model group, KXS-MS treatment attenuated Aβ_(25-35)-induced injury and enhanced the survival of SH-SY5Y cells. Meanwhile, KXS-MS down-regulated the LC3Ⅱ/LC3Ⅰ level and up-regulated the p-Akt/Akt and p-mTOR/mTOR levels. Compared with the low-concentration KXS-MS group, Rapa did not affect the cell survival and the levels of p-Akt and p-Akt/Akt, while it up-regulated the levels of LC3Ⅱ and LC3Ⅱ/LC3Ⅰ and down-regulated the levels of p-mTOR and p-mTOR/mTOR. 3-MA significantly reduced the cell survival rate and p-Akt, p-Akt/Akt level in the KXS-MS group, while it had no significant effect on the levels of LC3Ⅱ, LC3Ⅱ/LC3Ⅰ, p-mTOR, and p-mTOR/mTOR. The above results indicate that KXS-MS exhibits protective effects against Aβ_(25-35)-induced damage in SH-SY5Y cells by up-regulating Akt/mTOR activity to inhibit autophagy.
Humans
;
Autophagy/drug effects*
;
TOR Serine-Threonine Kinases/genetics*
;
Amyloid beta-Peptides/toxicity*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Cell Line, Tumor
;
Cell Survival/drug effects*
;
Peptide Fragments/toxicity*
;
Microtubule-Associated Proteins/genetics*
3.Triple-Target Inhibition of Cholinesterase, Amyloid Aggregation, and GSK3β to Ameliorate Cognitive Deficits and Neuropathology in the Triple-Transgenic Mouse Model of Alzheimer's Disease.
Junqiu HE ; Shan SUN ; Hongfeng WANG ; Zheng YING ; Kin Yip TAM
Neuroscience Bulletin 2025;41(5):821-836
Alzheimer's disease (AD) poses one of the most urgent medical challenges in the 21st century as it affects millions of people. Unfortunately, the etiopathogenesis of AD is not yet fully understood and the current pharmacotherapy options are somewhat limited. Here, we report a novel inhibitor, Compound 44, for targeting cholinesterases, amyloid-β (Aβ) aggregation, and glycogen synthase kinase 3β (GSK-3β) simultaneously with the aim of achieving symptomatic relief and disease modification in AD therapy. We found that Compound 44 had good inhibitory effects on all intended targets with IC50s of submicromolar or better, significant neuroprotective effects in cell models, and beneficial improvement of cognitive deficits in the triple transgenic AD (3 × Tg AD) mouse model. Moreover, we showed that Compound 44 acts as an autophagy regulator by inducing nuclear translocation of transcription factor EB through GSK-3β inhibition, enhancing the biogenesis of lysosomes and elevating autophagic flux, thus ameliorating the amyloid burden and tauopathy, as well as mitigating the disease phenotype. Our results suggest that triple-target inhibition via Compound 44 could be a promising strategy that may lead to the development of effective therapeutic approaches for AD.
Animals
;
Alzheimer Disease/genetics*
;
Mice, Transgenic
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Disease Models, Animal
;
Mice
;
Amyloid beta-Peptides/metabolism*
;
Cholinesterase Inhibitors/therapeutic use*
;
Humans
;
Autophagy/drug effects*
;
Cognitive Dysfunction/pathology*
;
Neuroprotective Agents/pharmacology*
4.Research progress of MCP-1 in the pathogenesis of Alzheimer's disease.
Yiming XU ; Qiuping LI ; Siyi MAO ; Kun YANG ; Shuya YANG
Chinese Journal of Cellular and Molecular Immunology 2024;40(12):1115-1120
Alzheimer's disease (AD) is a neurodegenerative disorder with an insidious onset, primarily characterized by a progressive decline in cognitive function. MCP-1 is a cytokine with chemotactic effects on monocytes, which can regulate their migration and infiltration and participate in disease progression. Increasing evidence suggests that MCP-1 plays a key role in the progression of Alzheimer's disease and has the potential to act as an early diagnostic marker and intervention target. This paper reviews the regulatory role of MCP-1 in neuroinflammation, beta-amyloid (Aβ) deposition and Tau pathology, and explores the potential of MCP-1 as a biomarker and intervention target for the early diagnosis of Alzheimer's disease.
Alzheimer Disease/metabolism*
;
Humans
;
Chemokine CCL2/genetics*
;
Amyloid beta-Peptides/metabolism*
;
Animals
;
tau Proteins/metabolism*
;
Biomarkers/metabolism*
5.Knock-down of ROCK2 gene improves cognitive function and reduces neuronal apoptosis in AD mice by promoting mitochondrial fusion and inhibiting its division.
Minfang GUO ; Huiyu ZHANG ; Peijun ZHANG ; Jingwen YU ; Tao MENG ; Suyao LI ; Lijuan SONG ; Zhi CHAI ; Jiezhong YU ; Cungen MA
Chinese Journal of Cellular and Molecular Immunology 2023;39(8):701-707
Objective To explore the effect of knocking down Rho-associated coiled-coil kinase (ROCK2) gene on the cognitive function of amyloid precursor protein/presenilin-1 (APP/PS1) double transgenic mice and its mechanism. Methods APP/PS1 double transgenic mice were randomly divided into AD model group (AD group), ROCK2 gene knock-down group (shROCK2 group), ROCK2 gene knock-down control group (shNCgroup), and wild-type C57BL/6 mice of the same age served as the wild-type control (WT group). Morris water maze and Y maze were employed to test the cognitive function of mice. Neuron morphology was detected by Nissl staining. Immunofluorescence histochemical staining was used to detect the expression of phosphorylated dynamin-related protein 1 (p-Drp1) and mitochondrial fusion 1 (Mfn1). Western blot analysis was used to detect the expression ROCK2, cleaved-caspase-3 (c-caspase-3), B-cell lymphoma 2 (Bcl2), Bcl2-related protein X (BAX), p-Drp1, mitochondrial fission 1 (Fis1), optic atrophy 1 (OPA1), Mfn1 and Mfn2. Results Compared with AD group mice, the expression of ROCK2 in shROCK2 group mice was significantly reduced; the cognitive function was significantly improved with the number of neurons in the hippocampal CA3 and DG areas increasing, and nissl bodies were deeply stained; the expression of c-caspase-3 and BAX was decreased, while the expression of Bcl2 was increased; the expression of mitochondrial division related proteins p-Drp1 and Fis1 were decreased, while the expression of mitochondrial fusion-related proteins OPA1, Mfn1 and Mfn2 were increased. Conclusion Knock-down of ROCK2 gene can significantly improve the cognitive function and inhibit the apoptosis of nerve cells of APP/PS1 mice. The mechanism may be related to promoting mitochondrial fusion and inhibiting its division.
Animals
;
Mice
;
Alzheimer Disease/pathology*
;
Amyloid beta-Peptides/metabolism*
;
Amyloid beta-Protein Precursor
;
Apoptosis/genetics*
;
bcl-2-Associated X Protein
;
Caspase 3
;
Cognition
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
Mitochondrial Dynamics/genetics*
6.A state-of-the-art review on miRNA in prevention and treatment of Alzheimer 's disease.
Journal of Zhejiang University. Medical sciences 2023;52(4):485-498
Alzheimer's disease (AD) is a multifactorial and heterogenic disorder. MiRNA is a class of non-coding RNAs with 19-22 nucleotides in length that can regulate the expression of target genes in the post-transcriptional level. It has been found that the miRNAome in AD patients is significantly altered in brain tissues, cerebrospinal fluid and blood circulation, as compared to healthy subjects. Experimental studies have suggested that expression changes in miRNA could drive AD onset and development via different mechanisms. Therefore, targeting miRNA expression to regulate the key genes involved in AD progression is anticipated to be a promising approach for AD prevention and treatment. Rodent AD models have demonstrated that targeting miRNAs could block biogenesis and toxicity of amyloid β, inhibit the production and hyper-phosphorylation of τ protein, prevent neuronal apoptosis and promote neurogenesis, maintain neural synaptic and calcium homeostasis, as well as mitigate neuroinflammation mediated by microglia. In addition, animal and human studies support the view that miRNAs are critical players contributing to the beneficial effects of cell therapy and lifestyle intervention to AD. This article reviews the most recent advances in the roles, mechanisms and applications of targeting miRNA in AD prevention and treatment based on rodent AD models and human intervention studies. The potential opportunities and challenges in clinical application of targeting miRNA for AD patients are also discussed.
Animals
;
Humans
;
MicroRNAs/genetics*
;
Alzheimer Disease/prevention & control*
;
Amyloid beta-Peptides
;
Apoptosis
;
Microglia
7.Serum metabolomics study of Psoraleae Fructus in improving learning and memory ability of APP/PS1 mice.
Jia-Ming GU ; Hui XUE ; Ao XUE ; Jing JIANG ; Fang GENG ; Ji-Hui ZHAO ; Bo YANG ; Ning ZHANG
China Journal of Chinese Materia Medica 2023;48(15):4039-4045
This study aimed to investigate the mechanism of Psoraleae Fructus in improving the learning and memory ability of APP/PS1 mice by serum metabolomics, screen the differential metabolites of Psoraleae Fructus on APP/PS1 mice, and reveal its influence on the metabolic pathway of APP/PS1 mice. Thirty 3-month-old APP/PS1 mice were randomly divided into a model group and a Psoraleae Fructus extract group, and another 15 C57BL/6 mice of the same age were assigned to the blank group. The learning and memory ability of mice was evaluated by the Morris water maze and novel object recognition tests, and metabolomics was used to analyze the metabolites in mouse serum. The results of the Morris water maze test showed that Psoraleae Fructus shortened the escape latency of APP/PS1 mice(P<0.01), and increased the number of platform crossing and residence time in the target quadrant(P<0.01). The results of the novel object recognition test showed that Psoraleae Fructus could improve the novel object recognition index of APP/PS1 mice(P<0.01). Eighteen differential metabolites in serum were screened out by metabolomics, among which the levels of arachidonic acid, tryptophan, and glycerophospholipid decreased after drug administration, while the levels of glutamyltyrosine increased after drug administration. The metabolic pathways involved included arachidonic acid metabolism, glycerophospholipid metabolism, tryptophan metabolism, linoleic acid metabolism, α-linolenic acid metabolism, and glycerolipid metabolism. Therefore, Psoraleae Fructus can improve the learning and memory ability of APP/PS1 mice, and its mechanism may be related to the effects in promoting energy metabolism, reducing oxidative damage, protecting central nervous system, reducing neuroinflammation, and reducing Aβ deposition. This study is expected to provide references for Psoraleae Fructus in the treatment of Alzheimer's disease(AD) and further explain the mechanism of Psoraleae Fructus in the treatment of AD.
Mice
;
Animals
;
Amyloid beta-Protein Precursor/genetics*
;
Mice, Transgenic
;
Arachidonic Acid
;
Tryptophan
;
Mice, Inbred C57BL
;
Alzheimer Disease/genetics*
;
Maze Learning
;
Glycerophospholipids
;
Disease Models, Animal
;
Amyloid beta-Peptides/metabolism*
9.Time dependent expression profiling of PTK2B and its relationship with Aβ, Tau and LRP-1 in hippocampus and blood of APPswe/PS1dE9 double-transgenic mouse.
Kai-Min HAO ; Zhen LIU ; Hao-Yu WANG ; Wen-Xiu QI
Chinese Journal of Applied Physiology 2022;38(1):17-24
Objective: To uncover the time-dependent expression pattern of ptk2b gene and ptk2b-encoded protein, protein tyrosine kinase 2 beta(PTK2B), in the brain tissues of transgenic animal models of Alzheimer's disease (AD) and its relationship with the levels of Aβ1-42, phosphorylation of Tau (p-Tau) and low density lipoprotein receptor-related protein-1(LRP-1) in blood and brain tissues. Methods: In this study, 5-, 10- and 15-month-old APPswe/PS1dE9 double-transgenic mice harboring the genotype of AD confirmed by the gene test were divided into the 5-, 10- and 15-month-old experiment groups, and simultaneously, age-matched C57BL/6J mice were placed into the corresponding control groups, with 8 mice in each group. All mice were subjected to the Morris Water Maze for test of cognitive and behavioral ability. Expression profiles of PTK2B, Aβ1-42, p-Tau/Tau and LRP-1 in the hippocampus or blood of mice were quantified by using the immunohistochemistry staining, Western blot or enzyme-linked immunosorbent assay (ELISA), while the mRNA expression of ptk2b in the hippocampus was quantified by using the real-time quantitative polymerase chain reaction (qRT-PCR). Results: Results of experiment groups demonstrated that as mice aged, the expression levels of PTK2B, ptk2b mRNA, Aβ1-42 and p-Tau/Tau in the hippocampus were increased, and the expression of LRP-1 was decreased gradually. While in the blood, the level of Aβ1-42 was decreased, and the cognitive and behavioral ability was decreased in an age-dependent manner (all P< 0.05). However, comparisons among the control groups, only the age-dependent downregulation of LRP-1 were observed in hippocampus(P<0.05), but other indicators had no significant differences (P>0.05). Conclusion: In the hippocampus of APP/PS1 double-transgenic mice, the expressions of PTK2B, Aβ1-42 and p-Tau/Tau are upregulated, LRP-1 is downregulated, while cognitive and behavioral ability is decreased, and such changes are presented in a time-dependent manner.
Alzheimer Disease/metabolism*
;
Amyloid beta-Peptides
;
Amyloid beta-Protein Precursor/genetics*
;
Animals
;
Focal Adhesion Kinase 2/metabolism*
;
Hippocampus/metabolism*
;
Low Density Lipoprotein Receptor-Related Protein-1
;
Maze Learning
;
Mice
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
RNA, Messenger
10.circBIRC6 contributes to the development of non-small cell lung cancer via regulating microRNA-217/amyloid beta precursor protein binding protein 2 axis.
Da NI ; Jiping TENG ; Youshuang CHENG ; Zhijun ZHU ; Bufeng ZHUANG ; Zhiyin YANG
Chinese Medical Journal 2022;135(6):714-723
BACKGROUND:
Circular RNAs (circRNAs) are considered to be important regulators in cancer biology. In this study, we focused on the effect of circRNA baculoviral inhibitor of apoptosis protein (IAP) repeat containing 6 (circBIRC6) on non-small cell lung cancer (NSCLC) progression.
METHODS:
The NSCLC and adjacent non-tumor tissues were collected at Shanghai Ninth People's Hospital. Quantitative real-time polymerase chain reaction was conducted for assessing the levels of circBIRC6, amyloid beta precursor protein binding protein 2 (APPBP2) messenger RNA (mRNA), baculoviral IAP repeat containing 6 mRNA (BIRC6), and microRNA-217 (miR-217). Western blot assay was adopted for measuring the protein levels of APPBP2, E-cadherin, N-cadherin, and vimentin. Colony formation assay, transwell assay, and flow cytometry analysis were utilized for evaluating cell colony formation, metastasis, and apoptosis. Dualluciferase reporter assay and RNA immunoprecipitation assay were carried out to determine the interaction between miR-217 and circBIRC6 and APPBP2 in NSCLC tissues. The murine xenograft model assay was used to investigate the function of circBIRC6 in tumor formation in vivo. Differences were analyzed via Student's t test or one-way analysis of variance. Pearson's correlation coefficient analysis was used to analyze linear correlation.
RESULTS:
CircBIRC6 was overexpressed in NSCLC tissues and cells. Knockdown of circBIRC6 repressed the colony formation and metastasis and facilitated apoptosis of NSCLC cells in vitro and restrained tumorigenesis in vivo. Mechanically, circBIRC6 functioned as miR-217 sponge to promote APPBP2 expression in NSCLC cells. MiR-217 inhibition rescued circBIRC6 knockdown-mediated effects on NSCLC cell colony formation, metastasis, and apoptosis. Overexpression of miR-217 inhibited the malignant phenotypes of NSCLC cells, while the effects were abrogated by elevating APPBP2.
CONCLUSIONS
CircBIRC6 aggravated NSCLC cell progression by elevating APPBP2 via sponging miR-217, which might provide a fresh perspective on NSCLC therapy.
Amyloid beta-Peptides/metabolism*
;
Amyloid beta-Protein Precursor/metabolism*
;
Animals
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
China
;
Gene Expression Regulation, Neoplastic/genetics*
;
Humans
;
Lung Neoplasms/pathology*
;
Mice
;
MicroRNAs/metabolism*
;
RNA, Circular/genetics*
;
RNA, Messenger

Result Analysis
Print
Save
E-mail