1.Glutamine synthetase-negative hepatocellular carcinoma has better prognosis and response to sorafenib treatment after hepatectomy.
Mingyang SHAO ; Qing TAO ; Yahong XU ; Qing XU ; Yuke SHU ; Yuwei CHEN ; Junyi SHEN ; Yongjie ZHOU ; Zhenru WU ; Menglin CHEN ; Jiayin YANG ; Yujun SHI ; Tianfu WEN ; Hong BU
Chinese Medical Journal 2023;136(17):2066-2076
BACKGROUND:
Glutamine synthetase (GS) and arginase 1 (Arg1) are widely used pathological markers that discriminate hepatocellular carcinoma (HCC) from intrahepatic cholangiocarcinoma; however, their clinical significance in HCC remains unclear.
METHODS:
We retrospectively analyzed 431 HCC patients: 251 received hepatectomy alone, and the other 180 received sorafenib as adjuvant treatment after hepatectomy. Expression of GS and Arg1 in tumor specimens was evaluated using immunostaining. mRNA sequencing and immunostaining to detect progenitor markers (cytokeratin 19 [CK19] and epithelial cell adhesion molecule [EpCAM]) and mutant TP53 were also conducted.
RESULTS:
Up to 72.4% (312/431) of HCC tumors were GS positive (GS+). Of the patients receiving hepatectomy alone, GS negative (GS-) patients had significantly better overall survival (OS) and recurrence-free survival (RFS) than GS+ patients; negative expression of Arg1, which is exclusively expressed in GS- hepatocytes in the healthy liver, had a negative effect on prognosis. Of the patients with a high risk of recurrence who received additional sorafenib treatment, GS- patients tended to have better RFS than GS+ patients, regardless of the expression status of Arg1. GS+ HCC tumors exhibit many features of the established proliferation molecular stratification subtype, including poor differentiation, high alpha-fetoprotein levels, increased progenitor tumor cells, TP53 mutation, and upregulation of multiple tumor-related signaling pathways.
CONCLUSIONS
GS- HCC patients have a better prognosis and are more likely to benefit from sorafenib treatment after hepatectomy. Immunostaining of GS may provide a simple and applicable approach for HCC molecular stratification to predict prognosis and guide targeted therapy.
Humans
;
Carcinoma, Hepatocellular/metabolism*
;
Sorafenib/therapeutic use*
;
Liver Neoplasms/metabolism*
;
Glutamate-Ammonia Ligase/metabolism*
;
Hepatectomy
;
Retrospective Studies
;
Prognosis
;
Neoplasm Recurrence, Local/surgery*
2.Effects of manipulating lactate dehydrogenase gene on metabolism of HEK-293 and production of human adenovirus.
Junqing MIAO ; Xiaoping YI ; Xiangchao LI ; Yingping ZHUANG
Chinese Journal of Biotechnology 2023;39(9):3863-3875
Reducing lactate accumulation has always been a goal of the mammalian cell biotechnology industry. When animal cells are cultured in vitro, the accumulation of lactate is mainly the combined result of two metabolic pathways. On one hand, glucose generates lactate under the function of lactate dehydrogenase A (LDHA); on the other hand, lactate can be oxidized to pyruvate by LDHB or LDHC and re-enter the TCA cycle. This study comprehensively evaluated the effects of LDH manipulation on the growth, metabolism and human adenovirus (HAdV) production of human embryonic kidney 293 (HEK-293) cells, providing a theoretical basis for engineering the lactate metabolism in mammalian cells. By knocking out ldha gene and overexpression of ldhb and ldhc genes, the metabolic efficiency of HEK-293 cells was effectively improved, and HAdV production was significantly increased. Compared with the control cell, LDH manipulation promoted cell growth, reduced the accumulation of lactate and ammonia, significantly enhanced the efficiency of substrate and energy metabolism of cells, and significantly increased the HAdV production capacity of HEK-293 cells. Among these LDH manipulation measures, ldhc gene overexpression performed the best, with the maximum cell density increased by about 38.7%. The yield of lactate to glucose and ammonia to glutamine decreased by 33.8% and 63.3%, respectively; and HAdV titer increased by at least 16 times. In addition, the ATP production rate, ATP/O2 ratio, ATP/ADP ratio and NADH content of the modified cell lines were increased to varying degrees, and the energy metabolic efficiency was significantly improved.
Animals
;
Humans
;
L-Lactate Dehydrogenase/genetics*
;
Lactic Acid
;
Adenoviruses, Human
;
Ammonia
;
HEK293 Cells
;
Glucose/metabolism*
;
Adenosine Triphosphate/metabolism*
;
Kidney/metabolism*
;
Mammals/metabolism*
3.Gene cloning and enzymatic activity analysis of phenylalanine ammonia-lyase from Sinopodophyllum hexandrum (Royle) Ying.
Di HU ; Xiaowei LUO ; Yuxian WANG ; Ming GONG ; Zhurong ZOU
Chinese Journal of Biotechnology 2023;39(7):2818-2838
Phenylalanine ammonia-lyase (PAL) is the key entry enzyme of plant phenylpropanoid pathway. It plays an important role in the biosynthesis of podophyllotoxin, an anti-tumor lignan that is currently produced from its main natural source Sinopodophyllum hexandrum (Royle) Ying. In this study, we cloned the gene ShPAL encoding phenylalanine ammonia-lyase by RT-PCR from the root of S. hexandrum ecotype inhabited in the Aba' district, Sichuan, based on its public SRA transcriptome data-package. Bioinformatics analyses showed that the ShPAL-encoded protein is composed of 711 amino acids, contains the conserved domains of PAL, and has the signature motif within the active center of aromatic ammonia-lyases. Moreover, ShPAL protein was predicted to have a secondary structure mainly composed of α-helix and random coil, a typical 'seahorse' shape monomer tertiary structure, and a homologous tetramer three-dimensional structure by Swiss-Modelling. The phylogenetic lineage analysis indicated ShPAL was of the highest sequence identity and the shortest evolutionary distance with the PAL of Epimedium sagittatum from the same Berberidaceae family. Subcellular localization experiments showed that ShPAL protein was mainly distributed in the cytoplasm, despite of a minority on the endoplasmic reticulum membrane. Furthermore, ShPAL protein was recombinantly expressed in Escherichia coli and purified by histidine-tag affinity chromatography. Its enzymatic activity was determined up to 20.91 U/mg, with the optimum temperature of 41 ℃ and pH of 9.0. In contrast, the enzyme activity of its F130H mutant decreased by about 23.6%, yet with the same trends of change with temperature and pH, confirming that phenylalanine at this position does affect the substrate specificity of PAL. Both the wild type and the mutant have relatively poor thermostability, but good pH-stability. These results may help to further investigate the regulatory role of PAL in the process of podophyllotoxin biosynthesis and advance the heterologous synthesis of podophyllotoxin to protect the germplasm resource of S. hexandrum. They also demonstrate that ShPAL has a potential application in biochemical industry and biomedicine.
Phenylalanine Ammonia-Lyase/metabolism*
;
Podophyllotoxin
;
Phylogeny
;
Cloning, Molecular
4.Effects of different extracts of Dendrobium officinale on rats with chronic pharyngitis induced by pepper water combined with ammonia.
Wen-Na JI ; Mei-Qiu YAN ; Jie SU ; Jing-Jing YU ; Su-Hong CHEN ; Gui-Yuan LYU ; Jian-Zhen CHEN
China Journal of Chinese Materia Medica 2022;47(9):2525-2532
Dendrobium officinale can serve as Chinese medicinal material effective in nourishing yin, clearing heat, and producing fluid, and is used to treat throat diseases, but its active substances and mechanism are not clear. To clarify the active fraction and underlying mechanism of D. officinale against chronic pharyngitis(CP), the present study induced a CP model in rats by pepper water combined with low-concentration ammonia, and crude polysaccharides of D. officinale(DOP), non-polysaccharides of D. officinale(DON), and total extract of D. officinale(DOT)(0.33 g·kg~(-1), calculated according to the crude drug) were administered by gavage for six weeks. The changes in oral secretions and pharyngeal conditions of rats with CP were observed and rated. The hematological indicators were determined by an automatic hematology analyzer. The serum levels of pro-inflammatory factors, such as tumor necrosis factor-alpha(TNF-α), interleukin 1β(IL-1β), and interleukin 6(IL-6), and T-lymphocyte cytokines, including interferon γ(IFN-γ), interleukin 4(IL-4), interleukin 17(IL-17), and transforming growth factor β1(TGF-β1) were detected by the enzyme-linked immunosorbent assay(ELISA). The proportions of CD3~+, CD4~+, and CD8~+cells in peripheral blood T lymphocyte subsets were determined by the flow cytometry. The histomorphological changes of the pharynx were observed by hematoxylin-eosin(HE) staining. The protein expression of nuclear factor-κB P65(NF-κB P65), cyclooxygenase-2(COX-2), F4/80, and monocyte chemoattractant protein-1(MCP-1) in the pharynx were detected by immunohistochemistry and Western blot. The results showed that DOP and DON could significantly relieve pharyngeal lesions, reduce white blood cells(WBC) and lymphocytes(LYMP), decrease the levels of pro-inflammatory factors TNF-α, IL-6, and IL-1β, and inhibit the protein expression of NF-κB P65, COX-2, F4/80, and MCP-1 in the pharynx. DOP was superior in reducing oral secretions and serum IL-17 level and inferior in increasing CD4~+/CD8~+ratio to DON. It is suggested that both polysaccharides and non-polysaccharides of D. officinale have anti-PC effects and the anti-inflammatory mechanism may be related to the regulation of T lymphocyte distribution and inhibition of the inflammatory signaling pathways mediated by NF-κB P65. The anti-inflammatory effect of DOP may be related to the regulation of Th17/Treg balance, while that of DON may be related to the regulation of the Th/Tc ratio.
Ammonia/therapeutic use*
;
Animals
;
Anti-Inflammatory Agents/therapeutic use*
;
Cyclooxygenase 2
;
Dendrobium/chemistry*
;
Interleukin-17/therapeutic use*
;
Interleukin-6
;
NF-kappa B/metabolism*
;
Pharyngitis/drug therapy*
;
Plant Extracts/chemistry*
;
Polysaccharides/pharmacology*
;
Rats
;
Tumor Necrosis Factor-alpha
;
Water
5.Molecular cloning and characterization of three phenylalanine ammonia-lyase genes from Schisandra chinensis.
San-Peng FAN ; Wei CHEN ; Jiang-Chun WEI ; Xiao-Xu GAO ; Yong-Cheng YANG ; An-Hua WANG ; Gao-Sheng HU ; Jing-Ming JIA
Chinese Journal of Natural Medicines (English Ed.) 2022;20(7):527-536
Phenylalanine ammonia-lyase (PAL), which catalyzes the conversion from L-phenylalanine to trans-cinnamic acid, is a well-known key enzyme and a connecting step between primary and secondary metabolisms in the phenylpropanoid biosynthetic pathway of plants and microbes. Schisandra chinensis, a woody vine plant belonging to the family of Magnoliaceae, is a rich source of dibenzocyclooctadiene lignans exhibiting potent activity. However, the functional role of PAL in the biosynthesis of lignan is relatively limited, compared with those in lignin and flavonoids biosynthesis. Therefore, it is essential to clone and characterize the PAL genes from this valuable medicinal plant. In this study, molecular cloning and characterization of three PAL genes (ScPAL1-3) from S. chinensis was carried out. ScPALs were cloned using RACE PCR. The sequence analysis of the three ScPALs was carried out to give basic characteristics followed by docking analysis. In order to determine their catalytic activity, recombinant protein was obtained by heterologous expression in pCold-TF vector in Escherichia coli (BL21-DE3), followed by Ni-affinity purification. The catalytic product of the purified recombinant proteins was verified using RP-HPLC through comparing with standard compounds. The optimal temperature, pH value and effects of different metal ions were determined. Vmax, Kcat and Km values were determined under the optimal conditions. The expression of three ScPALs in different tissues was also determined. Our work provided essential information for the function of ScPALs.
Cloning, Molecular
;
Escherichia coli/metabolism*
;
Phenylalanine/metabolism*
;
Phenylalanine Ammonia-Lyase/chemistry*
;
Recombinant Proteins
;
Schisandra/genetics*
6.Bioactive compounds of Jingfang Granules against SARS-CoV-2 virus proteases 3CLpro and PLpro.
Zhan Peng SHANG ; Yang YI ; Rong YU ; Jing Jing FAN ; Yi Xi HUANG ; Xue QIAO ; Min YE
Journal of Peking University(Health Sciences) 2022;54(5):907-919
OBJECTIVE:
Jingfang Granules have been recommended for the prevention and treatment of corona virus disease 2019 (COVID-19). Through chemical analysis and bioactivity evaluation, this study aims to elucidate the potential effective components of Jingfang Granules.
METHODS:
The inhibitory acti-vities of Jingfang Granules extract against 3-chymotrypsin-like protease (3CLpro), papain like protease (PLpro), spike protein receptor-binding domain (S-RBD) and human cyclooxygenase-2 (COX-2) were evaluated using enzyme assay. The antitussive effects were evaluated using the classical ammonia-induced cough model. The chemical constituents of Jingfang Granules were qualitatively and quantitatively analyzed by liquid chromatography-mass spectrometry (LC/MS). The 3CLpro and PLpro inhibitory activities of the major compounds were determined by enzyme assay, molecular docking, and site-directed mutagenesis.
RESULTS:
Jingfang Granules exhibited 3CLpro and PLpro inhibitory activities, as well as COX-2 inhibitory and antitussive activities. By investigating the MS/MS behaviors of reference standards, a total of fifty-six compounds were characterized in Jingfang Granules. Sixteen of them were unambiguously identified by comparing with reference standards. The contents of the 16 major compounds were also determined, and their total contents were 2 498.8 μg/g. Naringin, nodakenin and neohesperidin were three dominating compounds in Jingfang Granules, and their contents were 688.8, 596.4 and 578.7 μg/g, respectively. In addition, neohesperidin and naringin exhibited PLpro inhibitory activities, and the inhibition rates at 8 μmol/L were 53.5% and 46.1%, respectively. Prim-O-glucosylcimifugin showed significant inhibitory activities against 3CLpro and PLpro, and the inhibitory rates at 8 μmol/L were 76.8% and 78.2%, respectively. Molecular docking indicated that hydrogen bonds could be formed between prim-O-glucosylcimifugin and amino acid residues H163, E166, Q192, T190 of 3CLpro (binding energy, -7.7 kcal/mol) and K157, D164, R166, E167, T301 of PLpro(-7.3 kcal/mol), respectively. Site-directed mutagenesis indicated amino acid residue K157 was a key active site for the interaction between prim-O-glucosylcimifugin and PLpro.
CONCLUSION
Prim-O-glucosylcimifugin, neohesperidin, and naringin as the major compounds from Jingfang Granules could inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus proteases 3CLpro and PLpro. The results are valuable for rational clinical use of Jingfang Granules.
Amino Acids
;
Ammonia
;
Antitussive Agents
;
COVID-19
;
Chymases
;
Coronavirus 3C Proteases
;
Cyclooxygenase 2
;
Cyclooxygenase 2 Inhibitors
;
Cysteine Endopeptidases/metabolism*
;
Humans
;
Molecular Docking Simulation
;
Papain
;
Peptide Hydrolases
;
SARS-CoV-2
;
Spike Glycoprotein, Coronavirus
;
Tandem Mass Spectrometry
7.Renal replacement therapy in neonates with an inborn error of metabolism
Korean Journal of Pediatrics 2019;62(2):43-47
Hyperammonemia can be caused by several genetic inborn errors of metabolism including urea cycle defects, organic acidemias, fatty acid oxidation defects, and certain disorders of amino acid metabolism. High levels of ammonia are extremely neurotoxic, leading to astrocyte swelling, brain edema, coma, severe disability, and even death. Thus, emergency treatment for hyperammonemia must be initiated before a precise diagnosis is established. In neonates with hyperammonemia caused by an inborn error of metabolism, a few studies have suggested that peritoneal dialysis, intermittent hemodialysis, and continuous renal replacement therapy (RRT) are effective modalities for decreasing the plasma level of ammonia. In this review, we discuss the current literature related to the use of RRT for treating neonates with hyperammonemia caused by an inborn error of metabolism, including optimal prescriptions, prognosis, and outcomes. We also review the literature on new technologies and instrumentation for RRT in neonates
Ammonia
;
Astrocytes
;
Brain Edema
;
Coma
;
Diagnosis
;
Edema
;
Emergency Treatment
;
Humans
;
Hyperammonemia
;
Infant, Newborn
;
Metabolism
;
Metabolism, Inborn Errors
;
Peritoneal Dialysis
;
Plasma
;
Prescriptions
;
Prognosis
;
Renal Dialysis
;
Renal Replacement Therapy
;
Urea
8.Sarcopenia: Ammonia metabolism and hepatic encephalopathy
Ankur JINDAL ; Rakesh Kumar JAGDISH
Clinical and Molecular Hepatology 2019;25(3):270-279
Sarcopenia (loss of muscle mass and/or strength) frequently complicates liver cirrhosis and adversely affects the quality of life; cirrhosis related liver decompensation and significantly decreases wait-list and post-liver transplantation survival. The main therapeutic strategies to improve or reverse sarcopenia include dietary interventions (supplemental calorie and protein intake), increased physical activity (supervised resistance and endurance exercises), hormonal therapy (testosterone), and ammonia lowering agents (L-ornithine L-aspartate, branch chain amino acids) as well as mechanistic approaches that target underlying molecular and metabolic abnormalities. Besides other factors, hyperammonemia has recently gained attention and increase sarcopenia by various mechanisms including increased expression of myostatin, increased phosphorylation of eukaryotic initiation factor 2a, cataplerosis of α ketoglutarate, mitochondrial dysfunction, increased reactive oxygen species that decrease protein synthesis and increased autophagy-mediated proteolysis. Sarcopenia contributes to frailty and increases the risk of minimal and overt hepatic encephalopathy.
Ammonia
;
Aspartic Acid
;
Fibrosis
;
Hepatic Encephalopathy
;
Hyperammonemia
;
Liver
;
Liver Cirrhosis
;
Metabolism
;
Motor Activity
;
Myostatin
;
Peptide Initiation Factors
;
Phosphorylation
;
Proteolysis
;
Quality of Life
;
Reactive Oxygen Species
;
Sarcopenia
;
Testosterone
9.Exogenous H₂O₂ regulated secondary metabolism of Scutellaria baicalensis and enhanced drug quality.
Xiao-Ying FU ; Hui-Min GUO ; Wei CONG ; Xiang-Cai MENG
China Journal of Chinese Materia Medica 2018;43(2):271-287
The increasing demand of Chinese materia medica could not be supplied by wild resource, and the cultivated medicinal materials become popular, which led to decreased quality of many medicinal materials due to the difference of the circumstance between the wild and the cultivated. How to improve quality becomes key points of Chinese medicine resource. The leaves of Scutellaria baicalensis were sprayed with H₂O₂, the activities of superoxide dismutase (SOD) and catalase (CAT) changed little, but there had been a marked decrease of peroxidase (POD) and ascorbic oxidase (APX), which showed that the antioxidase system declined. Meanwhile, H₂O₂, as enhanced the expression of phenylalnine ammonialyase (PAL) and β-glucuronidase (GUS) as well as activity of PAL, promoted the biosynthesis and biotransformation of flavonoids. At the day 2 after treated, H₂O₂ of 0.004 μmol·L⁻¹ the contents of the baicalin and the wogonoside decreased slightly, but the contents of the baicalein and the wogonin increased significantly, the baicalein from 0.094% to 0.324%, the wogonin from 0.060% to 0.110%, i. e. increased 246% and 83.3%, respectively.
Ascorbate Oxidase
;
metabolism
;
Catalase
;
metabolism
;
Drugs, Chinese Herbal
;
chemistry
;
Flavanones
;
analysis
;
Flavonoids
;
analysis
;
Glucosides
;
analysis
;
Glucuronidase
;
metabolism
;
Hydrogen Peroxide
;
Peroxidase
;
metabolism
;
Phenylalanine Ammonia-Lyase
;
metabolism
;
Scutellaria baicalensis
;
metabolism
;
Secondary Metabolism
;
Superoxide Dismutase
;
metabolism
10.Expression of asparagine synthetase in relapsed or refractory extranodal NK/T cell lymphoma.
Shao-Jie WU ; Yu-Fa LI ; Yu-Jue WANG
Journal of Southern Medical University 2016;37(4):465-469
OBJECTIVETo detect the expression level of asparagine synthetase (ASNS) in patients with relapsed or refractory extranodal NK/T cell lymphoma and explore its clinical significance.
METHODSTen patients with relapsed or refractory extranodal NK/T cell lymphoma admitted in our department from January, 2013 to January, 2016 were analyzed. The diagnoses were confirmed by pathological and immunohistochemical examination following failed chemotherapies in all cases. Branched DNA-liquidchip technique (bDNA-LCT) was used for detecting ASNS mRNA expression in paraffin-embedded tissue sections in the 10 cases of relapsed or refractory extranodal NK/T cell lymphoma and in 5 cases of chronic rhinitis. The correlations were analyzed between ASNS expression and the clinicopathological features and outcomes of the patients with failed chemotherapy regimens containing asparaginasum.
RESULTSSix out of the 10 patients with relapsed or refractory extranodal NK/T cell lymphoma died due to diseaseprogression. The expression level of ASNS was significantly higher in the lymphoma tissues than in tissue specimens of chronic rhinitis (P<0.05). The expression level of ASNS was associated with the International Prognostic Index (P=0.023) in patients with relapsed or refractory extranodal NK/T cell lymphoma, and Kaplan-Meier curve showed that a high ASNS expression was correlated with a reduced overall survival and progression-free survival of the patients.
CONCLUSIONAsparaginasum-based chemotherapy regimens are recommended for treatment of relapsed or refractory extranodal NK/T cell lymphoma with low ASNS expressions.
Aspartate-Ammonia Ligase ; metabolism ; Disease-Free Survival ; Humans ; Lymphoma, Extranodal NK-T-Cell ; enzymology ; Recurrence

Result Analysis
Print
Save
E-mail