1.Autophagy Attenuates MnCl2-induced Apoptosis in Human Bronchial Epithelial Cells.
Zhun YUAN ; Xian Ping YING ; Wei Jian ZHONG ; Shi Min TIAN ; Yu WANG ; Yong Rui JIA ; Wen CHEN ; Juan Ling FU ; Peng ZHAO ; Zong Can ZHOU
Biomedical and Environmental Sciences 2016;29(7):494-504
OBJECTIVETo investigate the role of autophagy in MnCl2-induced apoptosis in human bronchial epithelial 16HBE cells.
METHODSCell proliferation was measured by MTT assay. Mitochondrial membrane potential (MMP) and apoptosis were measured by flow cytometry. Autophagic vacuoles were detected by fluorescence microscopy. Cellular levels of apoptosis and autophagy-related proteins were measured by western blotting.
RESULTS16HBE cell proliferation was inhibited by MnCl2 in a dose- and time-dependent manner. MnCl2-induced 16HBE cell growth inhibition was related to MMP depolarization prior to the induction of apoptosis. Our data revealed that MnCl2-induced apoptosis in 16HBE cells was mediated by decreased expression of Bcl-2 and increased levels of cleaved caspase-3. It was observed that when we exposed 16HBE cells to MnCl2 in a dose-dependent manner, the formation of autophagic vacuoles and the levels of LC-3B-II were elevated. RNA interference of LC3B in these MnCl2-exposed cells demonstrated that MMP loss and apoptosis were enhanced. Additionally, the pan-caspase inhibitor Z-VAD-FMK increased the cellular levels of Bcl-2 and decreased apoptosis, but did not affect the cellular levels of LC3B in MnCl2-treated 16HBE cells.
CONCLUSIONMnCl2 dose- and time-dependently inhibits 16HBE cell proliferation and induces MMP loss and apoptosis. Autophagy acts in a protective role against MnCl2-induced apoptosis in 16HBE cells.
Amino Acid Chloromethyl Ketones ; pharmacology ; Apoptosis ; drug effects ; Autophagy ; drug effects ; physiology ; Bronchi ; Cell Line ; Chlorides ; pharmacology ; Down-Regulation ; Epithelial Cells ; drug effects ; Gene Expression Regulation ; drug effects ; Humans ; Manganese Compounds ; pharmacology
2.Inhibition of Alveolar Macrophage Pyroptosis Reduces Lipopolysaccharide-induced Acute Lung Injury in Mice.
Dong-Dong WU ; Pin-Hua PAN ; Ben LIU ; Xiao-Li SU ; Le-Meng ZHANG ; Hong-Yi TAN ; Zu CAO ; Zuo-Ren ZHOU ; Hai-Tao LI ; Hao-Si LI ; Li HUANG ; Yuan-Yuan LI
Chinese Medical Journal 2015;128(19):2638-2645
BACKGROUNDPyroptosis is the term for caspase-1-dependent cell death associated with pro-inflammatory cytokines. The role of alveolar macrophage (AM) pyroptosis in the pathogenesis of the acute lung injury and acute respiratory distress syndrome (ALI/ARDS) remains unclear.
METHODSC57BL/6 wild-type mice were assigned to sham, lipopolysaccharide (LPS) + vehicle, LPS + acetyl-tyrosyl-valyl- alanyl-aspartyl-chloromethylketone (Ac-YVAD-CMK) and LPS + Z-Asp-Glu-Val-Asp-fluoromethylketone groups. Mice were given intraperitoneal (IP) injections of LPS. Drugs were IP injected 1 h before LPS administration. Mice were sacrificed 16 h after LPS administration, and AMs were isolated. Western blot analysis for active caspase-1 and cleaved caspase-3, evaluation of lung injury and a cytokine release analysis were performed. AMs were treated with LPS and adenosine triphosphate (ATP); caspase-1-dependent cell death was evaluated using flow cytometry; the apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) pyroptosomes were examined by immunofluorescence.
RESULTSThe expression of activated caspase-1 in AMs was enhanced following LPS challenge compared with the sham group. In the ex vivo study, the caspase-1/propidium iodide-positive cells, caspase-1 specks and ASC pyroptosomes were up-regulated in AMs following LPS/ATP stimulation. The specific caspase-1 inhibitor Ac-YVAD-CMK inhibited the activation of caspase-1 and pyroptotic cell death. Ac-YVAD-CMK also reduced the lung injury, pulmonary edema and total protein in bronchoalveolar lavage fluid (BALF). In addition, Ac-YVAD-CMK significantly inhibited interleukin-α2 (IL-1α2) release both in serum and BALF and reduced the levels of IL-18, tumor necrosis factor-α± (TNF-α±), High Mobility Group Box 1 (HMGB1) in BALF during LPS-induced ALI/ARDS.
CONCLUSIONSThis study reported AM pyroptosis during LPS-induced ALI/ARDS in mice and has demonstrated that Ac-YVAD-CMK can prevent AM-induced pyroptosis and lung injury. These preliminary findings may form the basis for further studies to evaluate this pathway as a target for prevention or reduction of ALI/ARDS.
Acute Lung Injury ; chemically induced ; prevention & control ; Amino Acid Chloromethyl Ketones ; pharmacology ; Animals ; Lipopolysaccharides ; toxicity ; Macrophages, Alveolar ; drug effects ; Male ; Mice ; Mice, Inbred C57BL ; Oligopeptides ; pharmacology ; Pyroptosis ; drug effects
3.Mechanisms of Apoptosis Induced by FTY720 in Multiple Myeloma Cell Line U266.
Ai-Jun LIAO ; Shu-Chen LI ; Bin WU ; Rong HU ; Ying-Chun LI ; Kun YAO ; Wei YANG ; Zhuo-Gang LIU
Journal of Experimental Hematology 2015;23(6):1623-1627
OBJECTIVETo investigate the effects of FTY720 on apoptosis in multiple myeloma cell line U266 and to clarify the molecular mechanism of apoptosis induced by FTY720.
METHODSU266 cells were treated with 2.5, 5, 10 and 20 µmol/L of FTY720 for 24 hours, the apoptotic rates were tested by flow cytometry with Annexin-V-FITC/PI staining. Then U266 cells were treated with 20 µmol/L FTY720 for 0, 6, 16 and 24 hours, the apoptotic rates were tested. U266 cells were treated with DMSO and FTY720 separately and then were stained with DAPI for 5 min. Drop the cells to the slides and cover the slide with the glass. The cells were observed by fluorescence microscopy. U266 cells were treated with 5 µmol/L FTY720 or together with different doses of Z-VAD-fmk (12.5, 25, 50 µmol/L), a pancaspase inhibitor, for 24 hours, then the cell viability was tested by CCK-8. U266 cells were treated with 2.5, 5, 10 and 20 µmol/L of FTY720 for 24 hours, the expression of cleaved caspase-3 was tested by Western blot. U266 cells were treated with 0, 5, 10 and 20 µmol/L of FTY720 for 24 hours, the expressions of MCL-1, survivin, BCL-2, BID, BAX, BAK, P-ERK were tested by Western blot.
RESULTSThe apoptotic rate increased in U266 cells treated with FTY720 and showed the characteristic of time-dependent and dose-dependent manner. Karyopyknosis and nuclearfragmentation could be observed in U266 cells treated with FTY720 after being stained with DAPI under fluorescent microscope. The same effect was not observed in the cells treated with DMSO. Z-VAD-fmk could rescue the apoptosis in U266 cells treated with FTY720 in dose-dependent manner. The expression of MCL-1, survivin and BCL-2 decreased in U266 cells treated with FTY720. The cleavage of BID could be observed in U266 cells treated with FTY720. FTY720 had no effect on the expression of BAX, BAK and P-ERK.
CONCLUSIONFTY720 can induce the apoptosis in U266 cells, the apoptosis was Caspase-3-depended. The apoptosis induced by FTY720 is due to the decrease of MCL-1, survivin and BCL-2, which are the inhibitors of apoptosis. Meanwhile, the apoptosis was also due to the activation of BID, which is pro-apoptotic protein.
Amino Acid Chloromethyl Ketones ; Apoptosis ; Caspase 3 ; Cell Line, Tumor ; Cell Survival ; Fingolimod Hydrochloride ; Humans ; Inhibitor of Apoptosis Proteins ; Multiple Myeloma
4.Ceramide participates in cell programmed death induced by Type II anti-CD20 mAb.
Yan HUANG ; Sun WU ; Yuan ZHANG ; Youmei ZI ; Man YANG ; Yan GUO ; Lingxiu ZHANG ; Lihua WANG
Journal of Central South University(Medical Sciences) 2015;40(12):1292-1297
OBJECTIVE:
To explore the exact mechanisms of programmed cell death (PCD) induced by Type II anti-CD20 mAb in CD20+ non-Hodgkin lymphoma (NHL) cells, and to provide theoretical basis for anti-tumor ability of new CD20 mAb.
METHODS:
After incubation with Rituximab (a Type I anti-CD20 mAb) and Tositumomab (a Type II anti-CD20 mAb), Raji cells were stained by annexin V & propidium iodide (PI). The ratio of programmed death cells were measured by two channel flow cytometry (FCM). Before the treatment of anti-CD20 mAbs, Raji cells was incubated with a caspase inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]- fluoromethylketone (Z-VAD-FMK) and a dihydroceramide synthase inhibitor fumonisin B1 (FB1) for 30 minutes to assess their inhibitory effect on PCD. High performance liquid chromatography (HPLC) was utilized to compare the ratio of programmed death cells between the pretreatment group (treated by Rituximab and Tositumomab) and the non-pretreatment group. The anti-CD20 mAbs-treated Raji cells were collected, and the ceramide levels in the Raji cells in the different pretreatment groups were also examined by HPLC, and the inhibitory effect of FB1 on the changes of ceramide levels in the Raji cells was measured. The Raji cells were incubated with different concentration C2-ceramide, C2-Ceramide-induced PCD was also evaluated by annexin V & PI staining after 16 hours.
RESULTS:
Tositumomab (10 µg/mL) but not Rituximab (10 µg/mL) can induce significant PCD (28.6±4.2)% in Raji cells, with significant difference (t=26.48, P<0.01), which cannot be blocked by Z-VAD-FMK with a concentration range from 10 to 30 µmol/L (F=3.01, P>0.05). The cellular ceramide levels in Raji cells were significantly elevated after the treatment of Tositumomab (t=28.48, P<0.01). C2-ceramide can significantly induce PCD in Raji cells in a dose-dependent manner with a concentration range from 5 to 40 µmol/L (F=2.71, P>0.05). The dihydroceramide synthase inhibitor FB1 can significantly inhibit the elevated cellular ceramide levels (F=20.18, P<0.01) and cell programmed death induced by Tositumomab (F=17.02, P<0.01).
CONCLUSION
Type II but not Type I anti-CD20 mAbs can induce caspase independent PCD in CD20+ NHL cells through the elevation of cellular ceramide levels. The PCD is not associated with classic caspase pathway.
Amino Acid Chloromethyl Ketones
;
Apoptosis
;
drug effects
;
Cell Line, Tumor
;
drug effects
;
Humans
;
Lymphoma, Non-Hodgkin
;
Rituximab
;
pharmacology
;
Sphingosine
;
analogs & derivatives
;
pharmacology
5.Gleevec induces apoptosis in K562 cells through activating caspase-3.
Qiao-Hong PU ; Qing-Qing WU ; Xiao-Bao JIN ; Wei-Zhang WANG
Acta Pharmaceutica Sinica 2014;49(8):1124-1129
The present study is to elucidate the mechanisms underlying Gleevec-induced apoptosis of chronic myeloid leukemia (CML) K562 cells in vitro. The apoptotic cell death and cell cycle distribution after Gleevec treatment and the effect of PDCD4 siRNA on Gleevec-induced apoptosis of K562 cells were analyzed by flow cytometry. The effect of Gleevec on p-Crkl, caspase-3, PARP and PDCD4 protein levels, and the knockdown efficacy of PDCD4 siRNA were detected by Western blotting. The results showed that Gleevec dramatically suppressed the phosphorylation level of Crkl in a dose-dependent manner and induced significant apoptosis and G0/G1 cell cycle arrest of K562 cells in time- and dose-dependent manners. In addition, Gleevec activated caspase-3 and its downstream substrates PARP, and the caspase pan inhibitor Z-VAD-FMK (50 micromol x L(-1)) markedly reduced Gleevec-induced apoptosis from 47.97% +/- 10.56% to 31.05% +/- 9.206% (P < 0.05). Moreover, Gleevec significantly increased the protein expression of programmed cell death 4 (PDCD4). PDCD4 knockdown by siRNA reduced Gleevec-induced apoptosis from 46.97% +/- 14.32% to 42.8% +/- 11.43%. In summary, Gleevec induced apoptosis in K562 cells via caspase-3 activation.
Amino Acid Chloromethyl Ketones
;
Apoptosis
;
drug effects
;
Benzamides
;
pharmacology
;
Caspase 3
;
metabolism
;
Cell Cycle
;
drug effects
;
Humans
;
Imatinib Mesylate
;
K562 Cells
;
Phosphorylation
;
Piperazines
;
pharmacology
;
Pyrimidines
;
pharmacology
6.Expression of Bim, Bax and Bak in the process of gingipain-induced osteoblast apoptosis.
Yu-ting CHEN ; Xiang-chen SONG ; Fu-ping ZHANG ; Min LIANG
Chinese Journal of Stomatology 2013;48(5):272-277
OBJECTIVETo establish osteoblast apoptosis model induced by gingipains, and to examine the expression of pro-apoptotic protein Bcl-2 interacting mediator (Bim), Bcl-2 associated X protein (Bax) and Bcl-2 antagonist/killer (Bak).
METHODSGingipain and gingipain acticity were extracted and measured. Mouse osteoblast cell line MC3T3-E1 cells were cultured in the presence of 0.453, 0.906, 1.812 U/L gingipains for 0, 16, 24 and 48 h. Apoptosis was examined by 4',6-diamidino-2-phenylindole (DAPI) staining or annexin V/propidine iodide (PI) staining.Protein expression of Bim, Bax and Bak was determined by Western blotting after osteoblasts were cultured with 1.812 U/L gingipain for 0, 4, 8, 16, 24 and 48 h. Osteoblasts were cultured with 1.812 U/L gingipain which had been inhibited with N-alpha-tosyl L-lysyl-chlorom ethylketone (TLCK). Western blotting was used to detect Bim expression and DAPI staining to measure apoptosis.
RESULTSArginine-specific proteinases (Rgp) activity was (18.11 ± 2.11) U/L and specific proteinases (Kgp) was (1.02 ± 0.25) U/L. Percentage of osteoblast apoptosis induced by 1.812 U/L gingipain rose to (6.31 ± 0.37)% after 16 h, and reached (11.20 ± 0.35)% at 24 h and (10.80 ± 0.46)% after 48 h with DAPI staining. Annexin V/PI staining supported the result from DAPI staining.Bim protein level increased during osteoblast apoptosis, the relative fold rose to (0.31 ± 0.03) after 4 h (about 2 fold compared to control), peaking at 24 h (0.57 ± 0.05, 3-4 fold compared to control). Proteinase inhibitor TLCK effectively blocked the activity of gingipain and inhibited up-regulation of Bim induced by gingipains from (0.58 ± 0.04) to (0.14 ± 0.03). The percentage of osteoblast apoptosis decreased from (11.20 ± 0.35)% to (4.31 ± 0.38)% in the presence of TLCK. Expression of Bax remained unchanged when cells were cultured with or without gingipains. Bak was under the detectable level in MC3T3-E1.
CONCLUSIONS1.812 U/L gingipains induced osteoblast apoptosis. Protein expression of Bim was up-regulated during cell apoptosis and was down-regulated when gingipain inhibited with TLCK, suggesting that Bim was involved in osteoblast apoptosis induced by gingipain. Inhibition of Bim protein expression protected osteoblast from apoptosis.
Adhesins, Bacterial ; pharmacology ; Animals ; Apoptosis ; drug effects ; Apoptosis Regulatory Proteins ; metabolism ; Bcl-2-Like Protein 11 ; Cell Line ; Cysteine Endopeptidases ; pharmacology ; Humans ; MCF-7 Cells ; Membrane Proteins ; metabolism ; Mice ; Osteoblasts ; cytology ; metabolism ; Proto-Oncogene Proteins ; metabolism ; Tosyllysine Chloromethyl Ketone ; pharmacology ; bcl-2 Homologous Antagonist-Killer Protein ; metabolism ; bcl-2-Associated X Protein ; metabolism
7.Gambogic Acid Induced Apoptosis through Activation of Caspase-dependent Pathway in Aortic Smooth Muscle Cells.
Dae Kwang KIM ; Tae Jin LEE ; Eun Ae KIM ; Ju Hwan KANG ; Kyung Gon KIM ; Joo Young KIM
Korean Journal of Physical Anthropology 2013;26(3):105-114
Gambogic acid (GA) has powerful apoptotic actions. The authors investigated whether GA has apoptotic effects on aortic smooth muscle cells, and compared its potency with that of simvastatin. Smooth muscle cells were isolated from the aortas of Sprague-Dawley rats (4-6 week). Cell purities were confirmed by IF staining using alpha-smooth muscle actin antibody. The IC50 values for cell death by GA and simvastatin were determined using a MTT assay, and the apoptotic effects of 1 microM GA or 30 microM simvastatin (concentrations correspond to IC50 values) were determined after 24 h of treatment using live cell images and by FITC annexin-V and propidium iodide double-staining. In addition, western blotting was used to evaluate apoptosis by quantifying reductions in the expression levels of the PARP and procaspase-3 as well as cleavages of PARP and procaspase-3 after treatment with 1 microM GA or 30 microM simvastatin. The IC50 of GA (1 microM) was lower than that of simvastatin (30 microM). Cell numbers were markedly reduced by both drugs in live cell images. GA (1 microM) produced a higher level of apoptosis than 30 microM simvastatin (26.4+/-2.37% vs. 8.3+/-1.54%, respectively; P<0.05, n=3) by FITC annexin-V & PI double-staining. In addition, 1 microM GA reduced the expressions of PARP, procaspase-3, and Mcl-1 in cells, whereas 30 microM simvastatin did not. Pretreatment with z-VAD-fmk attenuated GA-induced apoptosis and the cleavages of PARP and procaspase-3. The decreased level of Mcl-1 protein induced by GA treatment was recovered by z-VAD-fmk. These results indicate that GA-induced apoptosis was mediated by a caspase-dependent pathway.
Actins
;
Amino Acid Chloromethyl Ketones
;
Aorta
;
Apoptosis
;
Blotting, Western
;
Caspase 3
;
Cell Count
;
Cell Death
;
Fluorescein-5-isothiocyanate
;
Inhibitory Concentration 50
;
Muscle, Smooth
;
Muscles
;
Myocytes, Smooth Muscle
;
Propidium
;
Rats, Sprague-Dawley
;
Simvastatin
;
Xanthones
8.Cryopreservation of Collected Peripheral Blood Hematopoietic Stem Cell Product with 5% DMSO by Adding Nontoxic Natural Cryoprotectants.
Ji Yeon HAMM ; Yun Hee SHON ; Jang Soo SUH
Korean Journal of Blood Transfusion 2011;22(2):89-98
BACKGROUND: Cryopreservation of hematopoietic stem cells has become an important process due to the therapeutic protocol, which includes stem cell transplantation after chemotherapy, for many hematological malignancies. The conventional medium contains 10% dimethyl sulfoxide (DMSO) as a cryoprotectant, but this has been reported to be related with many complications. We analyzed the usefulness of trehalose, catalase and zVAD-fmk for cryopreservation along with using a reduced concentration of DMSO to 5%. METHODS: Peripheral blood stem cells were frozen in 10% DMSO as a control and also in 5% DMSO with trehalose and catalase. After 3 weeks of storage in a liquid nitrogen tank, the viability of the thawed hematopoietic stem cells was measured using Trypan blue staining and 7-AAD analysis via conducting flow cytometry. The colony forming potential was assessed using methylcellulose culture. We measured the viability of cells in 5% DMSO medium with or without addition of 30 uM zVAD-fmk right after thawing, and we also did this 6 and 24 hours after incubation. RESULTS: Cryopreserved cells in 5% DMSO with trehalose and catalase showed similar survival (50.42%) compared with the control (49.78%). The viability of cells that were also treated with added zVAD-fmk showed a better result (13.12%) than without it (5.5%) after 24 hours of incubation. Colony forming assay showed similar colony formation in 5% DMSO with the natural cryoprotectants. CONCLUSION: According to the results, lowering the DMSO concentration to 5% is significant and we can expect better cell viability and prevent many side effects of high dose DMSO when adding natural cryprotectants in the cryopreservation medium or by adding caspase-inhibitor right after thawing.
Amino Acid Chloromethyl Ketones
;
Catalase
;
Cell Survival
;
Cryopreservation
;
Dimethyl Sulfoxide
;
Diminazene
;
Flow Cytometry
;
Hematologic Neoplasms
;
Hematopoietic Stem Cells
;
Methylcellulose
;
Nitrogen
;
Safrole
;
Stem Cell Transplantation
;
Stem Cells
;
Trehalose
;
Trypan Blue
9.Antineoplastic effect of endogenous peroxisome proliferator-activated receptor gamma ligand, 15-deoxy-delta(12,14)-prostaglandin J2, on cholangiocarcinoma cells.
Sung Hoon JUNG ; Byung Ho KIM ; Young Il KIM ; Jaejun SHIM ; Young HWANGBO ; Jae Young JANG ; Seok Ho DONG ; Hyo Jong KIM ; Young Woon CHANG ; Rin CHANG ; Dae Ghon KIM
Korean Journal of Medicine 2010;78(1):75-86
BACKGROUND/AIMS: Peroxisome proliferator-activated receptor (PPAR)-gamma ligand is known to inhibit the growth of several kinds of cancer cells, yet its effect on cholangiocarcinoma is indecisive. We investigated the effect of an endogenous ligand of PPAR-gamma, 15-deoxy-delta (12,14)-prostaglandin J2 (15-deoxy-PGJ2) on cholangiocarcinoma cells that were established from intrahepatic cholangiocarcinoma tissue of Korean patients. METHODS: Four cholangiocarcinoma cell lines, Cho-CK, Choi-CK, JCK and SCK, were studied. The mRNA expression of PPAR-gamma, bcl-2, and bax were examined by RT-PCR. Cell viability was determined by MTT assay. The cell cycle was analyzed by flow cytometry, and apoptosis by cell death detection ELISA kit. Caspase activity was measured by colorimetric assay. The effect of caspase inhibitors on 15-deoxy-PGJ2-induced apoptosis was determined by measuring cell viability using the MTT assay. RESULTS: PPAR-gamma mRNA was expressed in all cholangiocarcinoma cells. 15-deoxy-PGJ2 inhibited proliferation of all cells in a dose- and time-dependent manner. All cells treated with 15-deoxy-PGJ2 showed increased dose-dependent apoptosis. Caspase 3 was activated in all cells and caspase 9 was activated in all but JCK cells after 15-deoxy-PGJ2 treatment. Caspase 8 activity showed no significant change. The pan-caspase inhibitor, Z-VAD-FMK, and the caspase-3 inhibitor, Z-DEVD-FMK, blocked 15-deoxy-PGJ2-induced apoptosis in all cells dose-dependently. The expression of bcl-2 was decreased in Cho-CK, Choi-CK and SCK cells, and bax expression was not changed significantly after 15-deoxy-PGJ2 treatment. CONCLUSIONS: PPAR-gamma mRNA was expressed in all Korean cholangiocarcinoma cells. Our data suggest that 15-deoxy-PGJ2 exerts an antineoplastic effect against cholangiocarcinoma cells by inducing apoptosis through caspase activation.
Amino Acid Chloromethyl Ketones
;
Apoptosis
;
Caspase 3
;
Caspase 8
;
Caspase 9
;
Caspase Inhibitors
;
Cell Cycle
;
Cell Death
;
Cell Line
;
Cell Survival
;
Cholangiocarcinoma
;
Enzyme-Linked Immunosorbent Assay
;
Flow Cytometry
;
Liver Neoplasms
;
Oligopeptides
;
Peroxisomes
;
PPAR gamma
;
Prostaglandin D2
;
RNA, Messenger
10.Apoptosis inducing factor mediates cisplatin-induced apoptosis of renal tubular epithelial cells.
Ye LIU ; Ye GUO ; Hui-juan WU ; Zhi-gang ZHANG ; Mu-yi GUO
Chinese Journal of Oncology 2010;32(3):173-178
OBJECTIVETo investigate the involvement of apoptosis inducing factor (AIF) in caspase-independent pathway mediating apoptosis of cultured renal tubular epithelial cells induced by cisplatin (CP).
METHODSWestern Blot analysis and real-time PCR were performed to detect cytosol AIF (cAIF), nuclear AIF (nAIF) and AIF mRNA expression in cultured renal epithelial cells (HK-2) treated with cisplatin (CP) at various concentrations (0 - 200 micromol/L) and time courses (0 - 12 h). Immunofluorescence analysis was used to detect the AIF protein distribution in HK-2 cells. Pan-caspase inhibitor (Z-VAD-FMK) and AIF-siRNA treatment, TUNEL and flow cytometer were used to measure the suppression of apoptosis induced by CP in HK-2 cells.
RESULTSThe expressions of cAIF, nAIF protein and AIF mRNA were all increased to some extent in HK-2 cells treated with CP at various concentrations and time points. cAIF expression was 2.3-fold (P < 0.05) increased after 25 micromol/L CP treatment for 12 h and 1.7-fold (P < 0.01) increased after 50 micromol/L CP treatment for 3 h, compared with that of control groups, and showed a concentration- and time-dependent increment. The nAIF expression reached a peak (4.3-fold increase) (P < 0.005) after 150 micromol/L CP treatment for 12 h and 3.7-fold incease (P < 0.05) after 50 micromol/L CP treatment for 9 h, compared with that of the 25 micromol/L group and 3 h group, respectively. The expression of nAIF was approximately consistent with cleaved-PARP expressive pattern. Real-time PCR showed that AIF mRNA increased gradually with prolonged treatment with 50 micromol/L CP and reached a peak at 9 h. Immunofluorescence assay showed AIF translocation from cytosol to nuclei in some cultured HK-2 cells treated with CP. Applying pan-caspase inhibitor (Z-VAD-FMK) and AIF-siRNA to CP-treated HK-2 cells, the apoptotic rates were decreased by 60.1% and 39.2%, respectively. The inhibitory effect on HK-2 cell apoptosis was even more significant with combination of both Z-VAD-FMK and AIF-siRNA.
CONCLUSIONThe AIF activation and translocation to nuclei with the increment of its mRNA expression mediates CP-induced apoptosis of renal tubular epithelial cells in vitro. It may provide a new therapeutic target for protecting from nephrotoxciity of cisplatin.
Amino Acid Chloromethyl Ketones ; pharmacology ; Antineoplastic Agents ; administration & dosage ; pharmacology ; Apoptosis ; drug effects ; Apoptosis Inducing Factor ; genetics ; metabolism ; Caspase Inhibitors ; Cell Nucleus ; metabolism ; Cells, Cultured ; Cisplatin ; administration & dosage ; pharmacology ; Cytosol ; metabolism ; Dose-Response Relationship, Drug ; Drug Synergism ; Epithelial Cells ; cytology ; metabolism ; Humans ; Kidney Tubules ; cytology ; Protein Transport ; RNA Interference ; RNA, Messenger ; metabolism ; RNA, Small Interfering ; genetics

Result Analysis
Print
Save
E-mail