1.Effect of aqueous extract of Corni Fructus on Aβ_(25-35)-induced brain injury and neuroinflammation in mice with Alzheimer's disease.
Feng-Xiao HAO ; Meng-Nan ZENG ; Bing CAO ; Xi-Wen LIANG ; Xin-Mian JIAO ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2023;48(15):4015-4026
The purpose of this study was to investigate the effect of aqueous extract of Corni Fructus on β-amyloid protein 25-35(Aβ_(25-35))-induced brain injury and neuroinflammation in Alzheimer's disease(AD) mice to provide an experimental basis for the treatment of AD by aqueous extract of Corni Fructus. Sixty C57BL/6J male mice were randomly divided into a sham group, a model group, a positive control group(huperizine A, 0.2 mg·kg~(-1)), a low-dose aqueous extract of Corni Fructus group(1.3 g·kg~(-1)), a medium-dose aqueous extract of Corni Fructus group(2.6 g·kg~(-1)), and a high-dose aqueous extract of Corni Fructus group(5.2 g·kg~(-1)). The AD model was induced by lateral ventricular injection of Aβ_(25-35) in mice except for those in the sham group, and AD model mice were treated with corresponding drugs by gavage for 24 days. The behavioral test was performed one week before animal dissection. Hematoxylin-eosin(HE) staining was performed to observe the morphology of neurons in the hippocampal region. Flow cytometry was used to detect the apoptosis level of primary hippocampal cells in mice. ELISA kits were used to detect the levels of β-amyloid protein 1-42(Aβ_(1-42)) and phosphorylated microtubule-associated protein Tau(p-Tau) in mouse brain tissues. Immunofluorescence and Western blot were used to detect the expression of related proteins in mouse brain tissues. MTT assay was used to detect the effect of compounds in aqueous extract of Corni Fructus on Aβ_(25-35)-induced N9 cell injury. Molecular docking was employed to analyze the interactions of caffeic acid, trans-p-hydroxy cinnamic acid, isolariciresinol-9'-O-β-D-glucopyranoside, esculetin, and(+)-lyoniresinol with β-amyloid precursor protein(APP), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α). Aqueous extract of Corni Fructus could improve the learning and memory abilities of Aβ_(25-35)-induced mice by increasing the duration of the autonomous activity, the rate of autonomous alternation, the preference coefficient, and the discrimination coefficient, and reduce Aβ_(25-35)-induced brain injury and neuroinflammation in mice by increasing the expression levels of interleukin-10(IL-10) and B-cell lymphoma-2(Bcl-2) in brain tissues, decreasing the expression levels of Aβ_(1-42), p-Tau, IL-6, TNF-α, cysteine aspartate-specific protease 3(caspase-3), cysteine aspartate-specific protease 9(caspase-9), and Bcl-2-associated X protein(Bax), and decreasing the number of activated glial cells in brain tissues. The results of cell experiments showed that esculetin and(+)-lyoniresinol could improve Aβ_(25-35)-induced N9 cell injury. Molecular docking results showed that caffeic acid, trans-p-hydroxy cinnamic acid, isolariciresinol-9'-O-β-D-glucopyranoside, esculetin, and(+)-lyoniresinol had good binding affinity with APP and weak binding affinity with IL-6 and TNF-α. Aqueous extract of Corni Fructus could ameliorate cognitive dysfunction and brain damage in Aβ_(25-35)-induced mice by reducing the number of apoptotic cells and activated glial cells in the brain and decreasing the expression level of inflammatory factors. Caffeic acid, trans-p-hydroxy cinnamic acid, isolariciresinol-9'-O-β-D-glucopyranoside, esculetin, and(+)-lyoniresinol may be the material basis for the anti-AD effect of aqueous extract of Corni Fructus.
Mice
;
Male
;
Animals
;
Alzheimer Disease/drug therapy*
;
Amyloid beta-Peptides/metabolism*
;
Cornus/metabolism*
;
Neuroinflammatory Diseases
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6
;
Aspartic Acid
;
Cysteine/therapeutic use*
;
Molecular Docking Simulation
;
Mice, Inbred C57BL
;
Brain Injuries
;
Peptide Hydrolases
;
Disease Models, Animal
;
Mice, Transgenic
2.Ershiwuwei Shanhu Pills regulate Akt/mTOR/GSK-3β signaling pathway to alleviate Alzheimer's disease mice.
Xiao-Min LUO ; Bo-Yu ZHANG ; Yi DING ; Cun-Ping WANG ; Qiu-Lin LUO ; Rui TAN ; Jian GU ; Pu-Yang GONG
China Journal of Chinese Materia Medica 2022;47(8):2074-2081
The present study investigated the mechanism of the Tibetan patent medicine Ershiwuwei Shanhu Pills(ESP) in alleviating Alzheimer's disease in mice via Akt/mTOR/GSK-3β signaling pathway. BALB/c mice were randomly assigned into a blank control group, a model group, low(200 mg·kg~(-1)), medium(400 mg·kg~(-1)) and high(800 mg·kg~(-1)) dose groups of ESP, and donepezil hydrochloride group. Except the blank control group, the other groups were given 20 mg·kg~(-1) aluminum chloride by gavage and 120 mg·kg~(-1) D-galactose by intraperitoneal injection for 56 days to establish Alzheimer's disease model. Morris water maze was used to detect the learning and memory ability of mice. The level of p-tau protein in mouse hippocampus and the levels of superoxide dismutase(SOD), malondialdehyde(MDA), catalase(CAT), and total antioxidant capacity(T-AOC) in hippocampus and serum were detected. Hematoxylin-eosin staining and Nissl staining were performed for the pathological observation of whole brain in mice. TdT-mediated dUTP nick-end labeling(TUNEL) staining was employed for the observation of apoptosis in mouse cortex. Western blot was adopted to detect the protein levels of p-mTOR, p-Akt, and GSK-3β in the hippocampus. Compared with the model group, the ESP groups showcased alleviated pathological damage of the whole brain, decreased TUNEL positive cells, reduced level of p-tau protein in hippocampus, and risen SOD, CAT, and T-AOC levels and declined MDA level in hippocampus and serum. Furthermore, the ESP groups had up-regulated protein levels of p-mTOR and p-Akt while down-regulated protein level of GSK-3β in hippocampus. Therefore, ESP can alleviate the learning and memory decline and oxidative damage in mice with Alzheimer's disease induced by D-galactose combined with aluminum chloride, which may be related to Akt/mTOR/GSK-3β signaling pathway.
Aluminum Chloride/adverse effects*
;
Alzheimer Disease/drug therapy*
;
Animals
;
Galactose/metabolism*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Hippocampus/metabolism*
;
Mice
;
Mice, Inbred BALB C
;
Plant Extracts
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Signal Transduction
;
Superoxide Dismutase/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
tau Proteins
3.Mechanism of Atractylodes macrocephala against Alzheimer's disease via regulating lysophagy based on LKB1-AMPK-TFEB pathway.
Li-Min WU ; Jie ZHAO ; Xiao-Wei ZHANG ; Zhong-Hua LI ; Pan WANG ; Yi-Ran SUN ; Zhen-Qiang ZHANG ; Zhi-Shen XIE
China Journal of Chinese Materia Medica 2022;47(17):4723-4732
Myloid beta(Aβ) is produced by cleavage of amyloid precursor protein(APP), which is a main reason for Alzheimer's disease(AD) occurrence and development. This study preliminarily investigated the mechanism of Atractylodes macrocephala(AM) against AD based on LKB1-AMPK-TFEB pathway. The effect of AM on memory ability of AD transgenic Caenorhabditis elegans CL2241 was detected, and then the APP plasmid was transiently transferred to mouse neuroblastoma(N2 a) cells in vitro. The mice were divided into the blank control group, APP group(model group), positive control group(100 μmol·L~(-1) rapamycin), and AM low-, medium-and high-dose groups(100, 200 and 300 μg·mL~(-1)). The content of Aβ_(1-42) in cell medium, the protein level of APP, the fluorescence intensity of APP, the transcriptional activity of transcription factor EB(TFEB), the activity of lysosomes in autophagy, and autophagy flux were determined by enzyme-linked immunosorbent assay(ELISA), Western blot, fluorescence microscope, luciferase reporter gene assay, RLuc-LC3 wt/RLuc-LC3 G120 A, and mRFP-GFP-LC3, respectively. The protein expression of TFEB, LC3Ⅱ, LC3Ⅰ, LAMP2, Beclin1, LKB1, p-AMPK and p-ACC was detected by Western blot. Immunofluorescence and reverse transcription-polymerase chain reaction(RT-PCR) were used to detect the fluorescence intensity of TFEB and the mRNA expression of TFEB and downstream target genes, respectively. The results showed that AM reduced the chemotactic index of transgenic C. elegans CL2241, and decreased the content of Aβ in the supernatant of cell culture medium at different concentrations. In addition, AM lowered the protein level of APP and the fluorescence intensity of APP in a dose-dependent manner. Transcriptional activity of TFEB and fluorescence intensity of mRFP-GFP-LC3 plasmid were enhanced after AM treatment, and the value of RLuc-LC3 wt/RLuc-LC3 G120 A was reduced. AM promoted the protein levels of TFEB, LAMP2 and Beclin1 at different concentrations, and increased the protein expression ratio of LC3Ⅱ/LC3Ⅰ in a dose-dependent manner. Immunofluorescence results revealed that AM improved the fluorescence intensity and nuclear expression of TFEB, and RT-PCR results indicated that AM of various concentrations elevated the mRNA expression of TFEB in APP transfected N2 a cells and promoted the transcription level of LAMP2 in a dose-dependent manner, and high-concentration AM also increased the mRNA levels of LC3 and P62. The protein levels of LKB1, p-AMPK and p-ACC were elevated by AM of different concentrations. In summary, AM regulating lysophagy and degrading APP are related to the activation of LKB1-AMPK-TFEB pathway.
AMP-Activated Protein Kinases/metabolism*
;
Alzheimer Disease/drug therapy*
;
Amyloid beta-Peptides/metabolism*
;
Amyloid beta-Protein Precursor/metabolism*
;
Animals
;
Atractylodes/chemistry*
;
Autophagy/drug effects*
;
Beclin-1/pharmacology*
;
Caenorhabditis elegans/metabolism*
;
Macroautophagy
;
Mice
;
RNA, Messenger
;
Sirolimus/pharmacology*
4.Mechanisms of Acupuncture in Improving Alzheimer's Disease Caused by Mitochondrial Damage.
Yu-Hang JIANG ; Jia-Kai HE ; Ran LI ; Ze-Hao CHEN ; Bao-Hui JIA
Chinese journal of integrative medicine 2022;28(3):272-280
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases among the elderly and it accounts for nearly 80% of all dementias. The pathogenesis of AD is complicated and enigmatic thus far. The mitochondrial cascade hypothesis assumes that mitochondrial damage may mediate, drive, or contribute to a variety of AD pathologies and may be the main factor in late-onset AD. Currently, there are no widely recognized drugs able to attenuate mitochondrial damage in AD. Notably, increasing evidence supports the efficacy of acupuncture for improving the mitochondrial structure and protecting mitochondrial functions in AD. This review reports the mechanisms by which acupuncture regulates mitochondrial dynamics, energy metabolism, calcium homeostasis and apoptosis. In conclusion, these findings suggest that AD mitochondrial dysfunction represents a reasonable therapeutic target and acupuncture could play a significant role in preventing and treating AD.
Acupuncture Therapy
;
Aged
;
Alzheimer Disease/drug therapy*
;
Apoptosis
;
Humans
;
Mitochondria/metabolism*
5.Angelica tenuissima Nakai Ameliorates Cognitive Impairment and Promotes Neurogenesis in Mouse Model of Alzheimer's Disease.
Minji CHOI ; Younghyurk LEE ; Seung-Hun CHO
Chinese journal of integrative medicine 2018;24(5):378-384
OBJECTIVETo research Angelica tenuissima Nakai (ATN) for use in novel Alzheimer's disease (AD) therapeutics.
METHODSThe effect of a 30% ethanol extract of ATN (KH032) on AD-like cognitive impairment and neuropathological and neuroinflammatory changes induced by bilateral intracerebroventricular injections of β-amyloid (Aβ) peptide (Aβ) was investigated. Male C57Bl/6 mice were randomly divided into 4 groups, 10 in each group. KH032-treated groups were administrated with a low or high dose of KH032 (50 and 200 mg/kg, respectively), intragastrically for 16 days; distilled water was applied in the sham and negative groups. Open fifield test, Y maze and Morris water maze test were used for behavior test and cognitive ability. In addition, the neuroprotective effects of KH032 in Aβ-infused mice on the histopathological markers [neuronspecific nuclear protein (NeuN), Aβ] of neurodegeneration were examined. The levels of glial fibrillary acidic protein (GFAP), NeuN, phosphorylation extracellular signal-regulated kinase (ERK)/ERK, brain-derived neurotrophic factor (BDNF), phosphorylation cAMP response element-binding (CREB)/CREB protein expression were measured by Western blot.
RESULTSKH032 treatment ameliorated cognitive impairments, reduced the overexpression of Aβ, and inhibited neuronal loss and neuroinflammatory response in the Aβ-infused mice. Moreover, KH032 treatment enhanced BDNF expression levels in the hippocampus. Finally, KH032 treatment increased phosphorylation of ERK1/2 and CREB, vital for ERK-CREB signaling.
CONCLUSIONSKH032 attenuated cognitive defificits in the Aβ-infused mice by increasing BDNF expression and ERK1/2 and CREB phosphorylation and inhibiting neuronal loss and neuroinflflammatory response, suggesting that KH032 has therapeutic potential in neurodegenerative disorders such as AD.
Alzheimer Disease ; drug therapy ; pathology ; physiopathology ; Amyloid beta-Peptides ; Angelica ; chemistry ; Animals ; Brain ; pathology ; Brain-Derived Neurotrophic Factor ; metabolism ; Cognitive Dysfunction ; complications ; drug therapy ; physiopathology ; Cyclic AMP Response Element-Binding Protein ; metabolism ; Disease Models, Animal ; Male ; Maze Learning ; drug effects ; Memory, Short-Term ; drug effects ; Mice, Inbred C57BL ; Neurogenesis ; drug effects ; Neuroglia ; drug effects ; metabolism ; pathology ; Neurons ; drug effects ; metabolism ; pathology ; Neuroprotective Agents ; pharmacology ; therapeutic use ; Phosphorylation ; drug effects ; Phytotherapy ; Plant Extracts ; pharmacology ; therapeutic use ; Plaque, Amyloid ; drug therapy ; pathology ; physiopathology ; Signal Transduction ; drug effects
6.Neuroprotective effects of Tongmai Yizhi Decoction () against Alzheimer's disease through attenuating cyclin-dependent kinase-5 expression.
Jing-Han FENG ; Bao-Chang CAI ; Wei-Feng GUO ; Ming-Yan WANG ; Yong MA ; Qiao-Xi LU
Chinese journal of integrative medicine 2017;23(2):132-137
OBJECTIVESTo explore the protective effects of Tongmai Yizhi Decoction (, TYD), a Chinese herb complex prescription against the impairment of cognitive functions and memory loss in amyloid beta 1-40 (Aβ) peptide and ibotenic (IBO)-induced Alzheimer's disease (AD) model rats.
METHODSThe in vivo model was established by injecting Aβand IBO into left hippocampal CA1 area of Sprague-Dawley (SD) rat to mimic AD. Totally 32 SD rats were divided into 4 groups, including sham operation group, AD model group, TYD group [AD rats treated with TYD at the dosage of 19.44 g/(kg•d) for 4 weeks] and huperzine A group [AD rats treated with huperzine A at the dosage of 40.5 μg/(kg•d) for 4 weeks]. Spatial learning and memory level was detected by Morris Water Maze test. Histological morphology in the hippocampus was tested by hematoxylin-eosin (HE) staining. Cyclin-dependent kinase-5 (Cdk5) protein and gene expression level were investigated by Western blot analysis and real-time quantitative polymerase chain reaction (RT-qPCR), respectively.
RESULTSAβ1-40 and IBO treatment induced longer escape latency of rats, compared with sham operation group from day 25 (P<0.01). However, TYD and huperzine A obviously shortened the escape latency from day 26 (P<0.01). Moreover, the effect of TYD was similar to huperzine A (P>0.05). Furthermore, HE staining also showed that TYD and huperzine A reversed the neuropathological changes in the hippocampus triggered by Aβ1-40 and IBO. TYD and huperzine A effectively reduced the expression levels of Cdk5 protein and gene located in rat hippocampus, compared with the AD model group (P<0.01).
CONCLUSIONTYD could be a promising neuroprotective agent for protecting neuron from AD injury through inhibiting Cdk5 expression.
Alzheimer Disease ; drug therapy ; pathology ; Animals ; Cognition ; drug effects ; Cyclin-Dependent Kinase 5 ; metabolism ; Disease Models, Animal ; Down-Regulation ; drug effects ; Drugs, Chinese Herbal ; therapeutic use ; Female ; Hippocampus ; drug effects ; Male ; Maze Learning ; drug effects ; Memory ; drug effects ; Neuroprotective Agents ; therapeutic use ; Rats ; Rats, Sprague-Dawley
7.Hyperbaric Oxygen Pretreatment Improves Cognition and Reduces Hippocampal Damage Via p38 Mitogen-Activated Protein Kinase in a Rat Model.
Baisong ZHAO ; Yongying PAN ; Zixin WANG ; Haiping XU ; Xingrong SONG
Yonsei Medical Journal 2017;58(1):131-138
PURPOSE: To investigate the effects of hyperbaric oxygen (HBO) pretreatment on cognitive decline and neuronal damage in an Alzheimer’s disease (AD) rat model. MATERIALS AND METHODS: Rats were divided into three groups: normal saline (NS), AD, and HBO+AD. In the AD group, amyloid β peptide (Aβ)₁₋₄₀ was injected into the hippocampal CA1 region of the brain. NS rats received NS injection. In the HBO+AD group, rats received 5 days of daily HBO therapy following Aβ₁₋₄₀ injection. Learning and memory capabilities were examined using the Morris water maze task. Neuronal damage and astrocyte activation were evaluated by hematoxylin-eosin staining and immunohistochemistry, respectively. Dendritic spine density was determined by Golgi-Cox staining. Tumor necrosis factor-α, interleukin-1β, and interleukin-10 production was assessed by enzyme-linked immunosorbent assay. Neuron apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling. Protein expression was examined by western blotting. RESULTS: Learning and memory dysfunction was ameliorated in the HBO+AD group, as shown by significantly lower swimming distances and escape latency, compared to the AD group. Lower rates of neuronal damage, astrocyte activation, dendritic spine loss, and hippocampal neuron apoptosis were seen in the HBO+AD than in the AD group. A lower rate of hippocampal p38 mitogen-activated protein kinase (MAPK) phosphorylation was observed in the HBO+AD than in the AD group. CONCLUSION: HBO pretreatment improves cognition and reduces hippocampal damage via p38 MAPK in AD rats.
Alzheimer Disease/*therapy
;
Amyloid beta-Peptides/*administration & dosage
;
Animals
;
Apoptosis
;
*Cognition/drug effects
;
Disease Models, Animal
;
Enzyme-Linked Immunosorbent Assay
;
Hippocampus/*enzymology
;
*Hyperbaric Oxygenation
;
In Situ Nick-End Labeling
;
Interleukin-10/biosynthesis
;
Interleukin-1beta/biosynthesis
;
Learning/drug effects
;
Male
;
Memory/drug effects
;
Neurons
;
Peptide Fragments/*administration & dosage
;
Rats
;
Rats, Sprague-Dawley
;
Sodium Chloride/administration & dosage
;
Tumor Necrosis Factor-alpha/biosynthesis
;
p38 Mitogen-Activated Protein Kinases/*metabolism
8.Neuroprotective effect of peptides extracted from walnut (Juglans Sigilata Dode) proteins on Aβ25-35-induced memory impairment in mice.
Juan ZOU ; Pei-shan CAI ; Chao-mei XIONG ; Jin-lan RUAN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(1):21-30
Alzheimer's disease (AD) is one of the major neurodegenerative disorders of the elderly, which is characterized by the accumulation and deposition of amyloid-beta (Aβ) peptide in human brains. Oxidative stress and neuroinflammation induced by Aβ in brain are increasingly considered to be responsible for the pathogenesis of AD. The present study aimed to determine the protective effects of walnut peptides against the neurotoxicity induced by Aβ25-35 in vivo. Briefly, the AD model was induced by injecting Aβ25-35 into bilateral hippocampi of mice. The animals were treated with distilled water or walnut peptides (200, 400 and 800 mg/kg, p.o.) for five consecutive weeks. Spatial learning and memory abilities of mice were investigated by Morris water maze test and step-down avoidance test. To further explore the underlying mechanisms of the neuroprotectivity of walnut peptides, the activities of superoxide dismutase (SOD), glutathione (GSH), acetylcholine esterase (AChE), and the content of malondialdehyde (MDA) as well as the level of nitric oxide (NO) in the hippocampus of mice were measured by spectrophotometric method. In addition, the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β) and IL-6 in the samples were determined using ELISA. The hippocampal expressions of inducible nitric oxide synthase (iNOS) and nuclear factor κB (NF-κB) were evaluated by Western blot analysis. The results showed that walnut peptides supplementation effectively ameliorated the cognitive deficits and memory impairment of mice. Meanwhile, our study also revealed effective restoration of levels of antioxidant enzymes as well as inflammatory mediators with supplementation of walnut peptides (400 or 800 mg/kg). All the above findings suggested that walnut peptides may have a protective effect on AD by reducing inflammatory responses and modulating antioxidant system.
Acetylcholinesterase
;
metabolism
;
Alzheimer Disease
;
drug therapy
;
etiology
;
Amyloid beta-Peptides
;
toxicity
;
Animals
;
Female
;
Glutathione
;
metabolism
;
Hippocampus
;
drug effects
;
metabolism
;
Interleukins
;
metabolism
;
Juglans
;
chemistry
;
Male
;
Malondialdehyde
;
metabolism
;
Maze Learning
;
Memory Disorders
;
drug therapy
;
etiology
;
Mice
;
NF-kappa B
;
metabolism
;
Neuroprotective Agents
;
pharmacology
;
therapeutic use
;
Nitric Oxide
;
metabolism
;
Peptide Fragments
;
toxicity
;
Peptides
;
pharmacology
;
therapeutic use
;
Plant Extracts
;
pharmacology
;
therapeutic use
;
Superoxide Dismutase
;
metabolism
;
Tumor Necrosis Factor-alpha
;
metabolism
9.Cranberry extract supplementation exerts preventive effects through alleviating Aβ toxicity in Caenorhabditis elegans model of Alzheimer's disease.
Hong GUO ; Yu-Qing DONG ; Bo-Ping YE
Chinese Journal of Natural Medicines (English Ed.) 2016;14(6):427-433
Cranberry extract (CBE) rich in polyphenols are potent to delay paralysis induced by alleviating β-amyloid (Aβ) toxicity in C. elegans model of Alzheimer's disease (AD). In order to better apply CBE as an anti-AD agent efficiently, we sought to deterrmine whether preventive or therapeutic effect contributes more prominently toward CBE's anti-AD activity. As the level of Aβ toxicity and memory health are two major pathological parameters in AD, in the present study, we compared the effects of CBE on Aβ toxicity and memory health in the C. elegans AD model treated with preventive and therapeutic protocols. Our results revealed that CBE prominently showed the preventive efficacy, providing a basis for further investigation of these effects in mammals.
Alzheimer Disease
;
drug therapy
;
genetics
;
metabolism
;
psychology
;
Amyloid beta-Peptides
;
metabolism
;
toxicity
;
Animals
;
Caenorhabditis elegans
;
drug effects
;
metabolism
;
Dietary Supplements
;
analysis
;
Disease Models, Animal
;
Female
;
Fruit
;
chemistry
;
Humans
;
Male
;
Memory
;
drug effects
;
Plant Extracts
;
administration & dosage
;
Vaccinium macrocarpon
;
chemistry
10.Effect of Dipsacus total saponins on the ability of learning and memory and acetylcholine metabolism of hippocampus in AD rats.
Chinese Journal of Applied Physiology 2015;31(1):82-84
OBJECTIVETo study the effects of Dipsacus total saponins on the ability of learning and memory and its mechanism of action.
METHODSForty rats were randomly divided into blank control group, model group, Dipsacus group and positive control group (n = 10), general situation of rats were observed, the ability of learning and memory of rats was tested by Square water maze, the activities of acetylcholinesterase (AChE)and choline acetyltransferase (ChAT) of hippocampus in rats were measured using double antibody sandwich method.
RESULTSDuring the period of treatment, general situation had no obvious change in model group, but general situation and the ability of activity were gradually improved in Dipsacus group and positive control group. Compared with blank control group, the swimming time was obviously prolonged and the number of mistakes was obviously increased at different time, the activity of AChE was significantly enhanced and the activity of ChAT was significantly decreased in model group. Compared with model group, the swimming time was obviously shortened and the number of mistakes was obviously reduced at different time, the activities of AChE were significantly decreased and the activities of ChAT were significantly enhanced in Dipsacus group and positive control group; Compared with positive control group, the swimming time and the number of mistakes at different time and the activities of AChE and ChAT had no significant difference in Dipsacus group.
CONCLUSIONDipsacus total saponins can improve the ability of learning and memory in Alzheimer' s disease(AD) rats, its mechanism of 'action may be related to regulating ACh metabolism of hippocampus.
Acetylcholine ; metabolism ; Acetylcholinesterase ; metabolism ; Alzheimer Disease ; drug therapy ; physiopathology ; Animals ; Choline O-Acetyltransferase ; metabolism ; Dipsacaceae ; chemistry ; Disease Models, Animal ; Hippocampus ; drug effects ; Learning ; drug effects ; Memory ; drug effects ; Rats ; Saponins ; pharmacology

Result Analysis
Print
Save
E-mail