1.Safety and effectiveness of lecanemab in Chinese patients with early Alzheimer's disease: Evidence from a multidimensional real-world study.
Wenyan KANG ; Chao GAO ; Xiaoyan LI ; Xiaoxue WANG ; Huizhu ZHONG ; Qiao WEI ; Yonghua TANG ; Peijian HUANG ; Ruinan SHEN ; Lingyun CHEN ; Jing ZHANG ; Rong FANG ; Wei WEI ; Fengjuan ZHANG ; Gaiyan ZHOU ; Weihong YUAN ; Xi CHEN ; Zhao YANG ; Ying WU ; Wenli XU ; Shuo ZHU ; Liwen ZHANG ; Naying HE ; Weihuan FANG ; Miao ZHANG ; Yu ZHANG ; Huijun JU ; Yaya BAI ; Jun LIU
Chinese Medical Journal 2025;138(22):2907-2916
INTRODUCTION:
Lecanemab has shown promise in treating early Alzheimer's disease (AD), but its safety and efficacy in Chinese populations remain unexplored. This study aimed to evaluate the safety and 6-month clinical outcomes of lecanemab in Chinese patients with mild cognitive impairment (MCI) or mild AD.
METHODS:
In this single-arm, real-world study, participants with MCI due to AD or mild AD received biweekly intravenous lecanemab (10 mg/kg). The study was conducted at Hainan Branch, Ruijin Hospital Shanghai Jiao Tong University School of Medicine. Patient enrollment and baseline assessments commenced in November 2023. Safety assessments included monitoring for amyloid-related imaging abnormalities (ARIA) and other adverse events. Clinical and biomarker changes from baseline to 6 months were evaluated using cognitive scales (mini-mental state examination [MMSE], montreal cognitive assessment [MoCA], clinical dementia rating-sum of boxes [CDR-SB]), plasma biomarker analysis, and advanced neuroimaging.
RESULTS:
A total of 64 patients were enrolled in this ongoing real-world study. Safety analysis revealed predominantly mild adverse events, with infusion-related reactions (20.3%, 13/64) being the most common. Of these, 69.2% (9/13) occurred during the initial infusion and 84.6% (11/13) did not recur. ARIA-H (microhemorrhages/superficial siderosis) and ARIA-E (edema/effusion) were observed in 9.4% (6/64) and 3.1% (2/64) of participants, respectively, with only two symptomatic cases (one ARIA-E presenting with headache and one ARIA-H with visual disturbances). After 6 months of treatment, cognitive scores remained stable compared to baseline (MMSE: 22.33 ± 5.58 vs . 21.27 ± 4.30, P = 0.733; MoCA: 16.38 ± 6.67 vs . 15.90 ± 4.78, P = 0.785; CDR-SB: 2.30 ± 1.65 vs . 3.16 ± 1.72, P = 0.357), while significantly increasing plasma amyloid-β 42 (Aβ42) (+21.42%) and Aβ40 (+23.53%) levels compared to baseline.
CONCLUSIONS:
Lecanemab demonstrated a favorable safety profile in Chinese patients with early AD. Cognitive stability and biomarker changes over 6 months suggest potential efficacy, though high dropout rates and absence of a control group warrant cautious interpretation. These findings provide preliminary real-world evidence for lecanemab's use in China, supporting further investigation in larger controlled studies.
REGISTRATION
ClinicalTrials.gov , NCT07034222.
Humans
;
Alzheimer Disease/drug therapy*
;
Male
;
Female
;
Aged
;
Middle Aged
;
Cognitive Dysfunction/drug therapy*
;
Aged, 80 and over
;
Amyloid beta-Peptides/metabolism*
;
Biomarkers
;
East Asian People
2.Congrong San ameliorates cognitive impairment and neuroinflammation in rat model of Alzheimer's disease by alleviating endoplasmic reticulum stress to inhibit NLRP3 inflammasome activation.
Yuan-Qin CAI ; Yang XIANG ; Qing-Hua LONG ; Xi WANG ; Chu-Hua ZENG
China Journal of Chinese Materia Medica 2025;50(7):1881-1888
This study aims to investigate the effect of Congrong San(CRS) on endoplasmic reticulum stress-induced neuroinflammation in the rat model of Aβ_(1-42)-induced Alzheimer's disease(AD). Sixty male Sprague-Dawley rats(2 months old) were randomized into blank(CON), model(MOD), low-dose Congrong San(L-CRS), medium-dose Congrong San(M-CRS), high-dose Congrong San(H-CRS), and memantine hydrochloride(MJG) groups. The Morris water maze test was carried out to examine the learning and memory abilities of rats in each group. Hematoxylin-eosin staining and Nissl staining were employed to observe the morphology and number of CA1 neurons in the hippocampus of rats in each group. The morphology and structure of the endoplasmic reticulum in the hippocampus were observed by transmission electron microscopy. The immunofluorescence assay was employed to detect the expression of 78 kDa glucose-regulated protein(GRP78) in the hippocampus. Western blot was employed to determine the expression of apoptosis-associated speck-like protein containing a CARD(ASC), cysteinyl aspartate-specific proteinase(caspase-1), interleukin-18(IL-18), interleukin-1β(IL-1β), GRP78, and pathway proteins including protein kinase RNA-like endoplasmic reticulum kinase(PERK), phosphorylated PERK(p-PERK), C/EBP homologous protein(CHOP), and NOD-like receptor pyrin domain-containing protein 3(NLRP3) in the rat hippocampus. Compared with the MOD group, the M-CRS and H-CRS groups showed improved learning and memory abilities, reduced neuron losses in the hippocampus, alleviated endoplasmic reticulum stress, inhibited PERK-CHOP-NLRP3 pathway, and lowered levels of IL-1β, IL-6, and tumor necrosis factor-alpha(TNF-α). The results suggest that CRS can alleviate cognitive impairment and hippocampal neuron damage and reduce neuroinflammation in AD rats by alleviating endoplasmic reticulum stress to inhibit the activation of NLRP3 inflammasomes.
Animals
;
Endoplasmic Reticulum Stress/drug effects*
;
Male
;
Alzheimer Disease/psychology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Rats, Sprague-Dawley
;
Rats
;
Inflammasomes/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Cognitive Dysfunction/metabolism*
;
Disease Models, Animal
;
Hippocampus/drug effects*
;
Humans
;
Neuroinflammatory Diseases/drug therapy*
3.Research progress of treating Alzheimer's disease with traditional Chinese medicine.
Xin LIU ; Ruo-Bing ZHANG ; Chen-Xue LI ; Wen-Lan LI
China Journal of Chinese Materia Medica 2025;50(5):1146-1154
Alzheimer's disease(AD) has a high incidence rate and insidious onset, and it is the main type of senile dementia, severely affecting the survival and death of patients. The main clinical manifestations include memory loss, aphasia, apraxias, agnosia, and changes in executive dysfunction, personality, and behaviors, and its pathogenesis is not yet clear. In recent years, there has been an increasing number of traditional Chinese medicine treatments for AD, including Chinese herbal compounds, external treatments of traditional Chinese medicine(TCM), and a combination of TCM and Western medicine, with significant efficacy and no obvious toxic side effects. Starting from the understanding of the pathogenesis of AD in TCM, this article comprehensively summarized the theoretical basis of TCM in treating the disease, providing a theoretical basis for clinical research.
Alzheimer Disease/drug therapy*
;
Humans
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Animals
4.Dihuang Yinzi Regulates cAMP/PKA/CREB-BDNF to Improve Synaptic Plasticity in APP/PS1 Mice: A Study Based on Brain Metabolomics.
Huan-Ning JIANG ; Bo ZHANG ; Jian ZHANG ; Yan-Yan ZHOU
Chinese journal of integrative medicine 2025;31(11):991-1000
OBJECTIVE:
To explore the mechanism of Dihuang Yinzi (DHYZ) in the treatment of Alzheimer's disease (AD) by integrating metabolomics and experimental verification.
METHODS:
Forty-eight male APP/PS1 mice were divided into model, high- (DHYZ-H), medium- (DHYZ-M), and low-dose DHYZ (DHYZ-L) groups (12 mice per group) according to a random number table. Mice in DHYZ groups were gavaged with DHYZ 6.34, 12.68, and 25.35 g/(kg·d), respectively. Twelve C57BL/6 mice were gavaged with distilled water as the blank group. Metabolomics was used to analyze differential metabolites in the brains of mice. Morris water maze test was used to detect the memory abilities of mice. The hematoxylin-eosin staining and transmission electron microscopy were used to observe the general morphology and ultrastructure of neurons. The enzyme-linked immunosorbent assay was used to detect the levels of superoxide dismutase (SOD), reactive oxygen species (ROS), and amyloid β -protein 1-42 (A β1-42). The real-time quantitative polymerase chain reaction was used to detect the mRNA expressions of density-regulated protein 1 (DRP1), fission 1 (FIS1), mitofusin-1 (MFN1), and optic atrophy protein 1 (OPA1). Western blot was used to detect the protein expressions of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), cAMP response binding protein (CREB), brain-derived neurotrophic factor (BDNF), synapsin 1 (SYN1), synaptophysin (SYP), and postsynaptic density protein 95 (PSD95).
RESULTS:
A total of 82 differential metabolites were identified in the brains of APP/PS1 mice, among which 7 differential metabolites could be regulated by DHYZ. After DHYZ intervention, the memory abilities of mice significantly increased (P<0.05 or P<0.01), the number of synapses and neurons in the hippocampus increased, and the mitochondrial morphology and structure were relatively intact. The DHYZ groups exhibited a significant reduction in hippocampal ROS and A β1-42 levels, along with a significant elevation in SOD level (P<0.05 or P<0.01). The mRNA expressions of DRP1 and FIS1 were reduced, while the mRNA expressions of MFN1 and OPA1 were increased after DHYZ treatment (P<0.05 or P<0.01). The cAMP/PKA/CREB-BDNF pathway was activated, and the expressions of SYN1, SYP and PSD95 proteins were significantly increased in the DHYZ-H group (P<0.05 or P<0.01).
CONCLUSIONS
DHYZ could improve mitochondrial dynamics and synaptic plasticity in APP/PS1 mice, inhibit oxidative stress, and thereby enhancing learning and memory abilities in APP/PS1 mice. Its mechanism might be related to activation of the cAMP/PKA/CREB-BDNF signaling pathway.
Animals
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Male
;
Cyclic AMP Response Element-Binding Protein/metabolism*
;
Brain/drug effects*
;
Metabolomics
;
Mice, Inbred C57BL
;
Neuronal Plasticity/drug effects*
;
Drugs, Chinese Herbal/therapeutic use*
;
Cyclic AMP-Dependent Protein Kinases/metabolism*
;
Cyclic AMP/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Amyloid beta-Protein Precursor/metabolism*
;
Mice, Transgenic
;
Mice
;
Amyloid beta-Peptides/metabolism*
;
Signal Transduction/drug effects*
;
Alzheimer Disease/drug therapy*
;
Superoxide Dismutase/metabolism*
5.Food-derived bioactive peptides: health benefits, structure‒activity relationships, and translational prospects.
Hongda CHEN ; Jiabei SUN ; Haolie FANG ; Yuanyuan LIN ; Han WU ; Dongqiang LIN ; Zhijian YANG ; Quan ZHOU ; Bingxiang ZHAO ; Tianhua ZHOU ; Jianping WU ; Shanshan LI ; Xiangrui LIU
Journal of Zhejiang University. Science. B 2025;26(11):1037-1058
Food-derived bioactive peptides (FBPs), particularly those with ten or fewer amino acid residues and a molecular weight below 1300 Da, have gained increasing attention for their safe, diverse structures and specific biological activities. The development of FBP-based functional foods and potential medications depends on understanding their structure‒activity relationships (SARs), stability, and bioavailability properties. In this review, we provide an in-depth overview of the roles of FBPs in treating various diseases, including Alzheimer's disease, hypertension, type 2 diabetes mellitus, liver diseases, and inflammatory bowel diseases, based on the literature from July 2017 to Mar. 2023. Subsequently, attention is directed toward elucidating the associations between the bioactivities and structural characteristics (e.g., molecular weight and the presence of specific amino acids within sequences and compositions) of FBPs. We also discuss in silico approaches for FBP screening and their limitations. Finally, we summarize recent advancements in formulation techniques to improve the bioavailability of FBPs in the food industry, thereby contributing to healthcare applications.
Humans
;
Peptides/therapeutic use*
;
Structure-Activity Relationship
;
Functional Food
;
Diabetes Mellitus, Type 2/drug therapy*
;
Biological Availability
;
Alzheimer Disease/drug therapy*
;
Inflammatory Bowel Diseases/drug therapy*
;
Hypertension/drug therapy*
;
Liver Diseases/drug therapy*
;
Bioactive Peptides, Dietary
6.n-butanol fraction of ethanol extract of Periploca forrestii Schltr.: its active components, targets and pathways for treating Alcheimer's disease in rats.
Niandong RAN ; Jie LIU ; Jian XU ; Yongping ZHANG ; Jiangtao GUO
Journal of Southern Medical University 2025;45(4):785-798
OBJECTIVES:
To investigate the active components and possible mechanisms of n-butanol fraction of Periploca forrestii Schltr. ethanol extract for treating Alzheimer's disease (AD).
METHODS:
The active components of n-butanol fraction of Periploca forrestii Schltr. ethanol extract were analyzed using UPLC-QE-MS technique. In a SD rat model of AD induced by treatment with AlCl3 and D-gal, the therapeutic effects of low, moderate and high doses of the n-butanol fraction, saline, and donepezil hydrochloride were evaluated using ELISA, HE and Nissl staining, immunohistochemistry and Western blotting. The therapeutic mechanisms of the n-butanol fraction were explored using network pharmacology and molecular docking.
RESULTS:
Seventeen active components were identified from the n-butanol fraction of Periploca forrestii Schltr. ethanol extract, including phenylpropanoids, flavonoids, anthraquinones, triterpenoids, steroids, and volatile oils. In the rat models of AD, treatment with the n-butanol fraction significantly lowed AChE content in the hippocampus, increased the contents of ACh, SOD, CAT, and GSH-Px, enhanced the expressions of neuronal apoptotic factors Bcl-2, PI3K, Akt, p-PI3K, and p-Akt, and reduced the expressions of Bax and caspase-3 proteins. The treatment also dose-dependently up-regulated hippocampal expressions of Nrf-2, HO-1 and BDNF and down-regulated Keap-1, Aβ and Tau expressions. Bioinformatics analysis identified 14 key intersected targets (including TNF, AKT1 and ESR1) between the n-butanol fraction and AD.
CONCLUSIONS
The therapeutic effect of n-butanol fraction of Periploca forrestii Schltr. ethanol extract in AD mice is mediated by its multiple active components that regulate multiple targets and pathways.
Animals
;
Rats, Sprague-Dawley
;
Rats
;
1-Butanol/chemistry*
;
Plant Extracts/pharmacology*
;
Periploca/chemistry*
;
Ethanol/chemistry*
;
Alzheimer Disease/drug therapy*
;
Male
;
Molecular Docking Simulation
;
Apoptosis/drug effects*
7.KG-CNNDTI: a knowledge graph-enhanced prediction model for drug-target interactions and application in virtual screening of natural products against Alzheimer's disease.
Chengyuan YUE ; Baiyu CHEN ; Long CHEN ; Le XIONG ; Changda GONG ; Ze WANG ; Guixia LIU ; Weihua LI ; Rui WANG ; Yun TANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(11):1283-1292
Accurate prediction of drug-target interactions (DTIs) plays a pivotal role in drug discovery, facilitating optimization of lead compounds, drug repurposing and elucidation of drug side effects. However, traditional DTI prediction methods are often limited by incomplete biological data and insufficient representation of protein features. In this study, we proposed KG-CNNDTI, a novel knowledge graph-enhanced framework for DTI prediction, which integrates heterogeneous biological information to improve model generalizability and predictive performance. The proposed model utilized protein embeddings derived from a biomedical knowledge graph via the Node2Vec algorithm, which were further enriched with contextualized sequence representations obtained from ProteinBERT. For compound representation, multiple molecular fingerprint schemes alongside the Uni-Mol pre-trained model were evaluated. The fused representations served as inputs to both classical machine learning models and a convolutional neural network-based predictor. Experimental evaluations across benchmark datasets demonstrated that KG-CNNDTI achieved superior performance compared to state-of-the-art methods, particularly in terms of Precision, Recall, F1-Score and area under the precision-recall curve (AUPR). Ablation analysis highlighted the substantial contribution of knowledge graph-derived features. Moreover, KG-CNNDTI was employed for virtual screening of natural products against Alzheimer's disease, resulting in 40 candidate compounds. 5 were supported by literature evidence, among which 3 were further validated in vitro assays.
Alzheimer Disease/drug therapy*
;
Biological Products/therapeutic use*
;
Humans
;
Neural Networks, Computer
;
Machine Learning
;
Drug Discovery/methods*
;
Algorithms
;
Drug Evaluation, Preclinical/methods*
8.Recommendations for the disease-modifying treatments of early Alzheimer's disease.
Chinese Journal of Internal Medicine 2025;64(5):385-395
Monoclonal antibodies targeting β-amyloid (Aβ)(represented by Lecanemab) have been approved in the United States, Japan and China for the treatment of mild cognitive impairment (MCI) due to Alzheimer's disease (AD) or mild AD dementia, and AD treatment has moved towards the era of disease modifying therapy (DMT). In view of the lack of use experience with DMT in China, this article presents recommendations for Aβ-based DMT clinical practice based on its clinical evidence, as well as its existing usage experience and research regarding AD. These recommendations include the mechanism of action, patient selection, standardized use, effectiveness, and safety monitoring, intending to help guide the rational use in real-world clinical practice.
Humans
;
Alzheimer Disease/drug therapy*
;
Amyloid beta-Peptides
9.Therapeutic Mechanism of Kai Xin San on Alzheimer's Disease Based on Network Pharmacology and Experimental Validation.
Kan WANG ; Rong YANG ; Tuan-Tuan CHEN ; Mei-Rong QIN ; Ping WANG ; Ming-Wang KONG
Chinese journal of integrative medicine 2023;29(5):413-423
OBJECTIVE:
To explore the specific pharmacological molecular mechanisms of Kai Xin San (KXS) on treating Alzheimer's disease (AD) based on network pharmacology and experimental validation.
METHODS:
The chemical compounds of KXS and their corresponding targets were screened using the Encyclopedia of Traditional Chinese Medicine (ETCM) database. AD-related target proteins were obtained from MalaCards database and DisGeNET databases. Key compounds and targets were identified from the compound-target-disease network and protein-protein interaction (PPI) network analysis. Functional enrichment analysis predicted the potential key signaling pathways involved in the treatment of AD with KXS. The binding affinities between key ingredients and targets were further verified using molecular docking. Finally, the predicted key signaling pathway was validated experimentally. Positioning navigation and space search experiments were conducted to evaluate the cognitive improvement effect of KXS on AD rats. Western blot was used to further examine and investigate the expression of the key target proteins related to the predicted pathway.
RESULTS:
In total, 38 active compounds and 469 corresponding targets of KXS were screened, and 264 target proteins associated with AD were identified. The compound-target-disease and PPI networks identified key active ingredients and protein targets. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested a potential effect of KXS in the treatment of AD via the amyloid beta (A β)-glycogen synthase kinase-3 beta (GSK3 β)-Tau pathway. Molecular docking revealed a high binding affinity between the key ingredients and targets. In vivo, KXS treatment significantly improved cognitive deficits in AD rats induced by Aβ1-42, decreased the levels of Aβ, p-GSK3β, p-Tau and cyclin-dependent kinase 5, and increased the expressions of protein phosphatase 1 alpha (PP1A) and PP2A (P<0.05 or P<0.01).
CONCLUSION
KXS exerted neuroprotective effects by regulating the Aβ -GSK3β-Tau signaling pathway, which provides novel insights into the therapeutic mechanism of KXS and a feasible pharmacological strategy for the treatment of AD.
Rats
;
Animals
;
Alzheimer Disease/drug therapy*
;
Amyloid beta-Peptides
;
Glycogen Synthase Kinase 3 beta
;
Network Pharmacology
;
Molecular Docking Simulation
;
Glycogen Synthase Kinase 3/therapeutic use*
;
Drugs, Chinese Herbal/therapeutic use*
10.Effect of aqueous extract of Corni Fructus on Aβ_(25-35)-induced brain injury and neuroinflammation in mice with Alzheimer's disease.
Feng-Xiao HAO ; Meng-Nan ZENG ; Bing CAO ; Xi-Wen LIANG ; Xin-Mian JIAO ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2023;48(15):4015-4026
The purpose of this study was to investigate the effect of aqueous extract of Corni Fructus on β-amyloid protein 25-35(Aβ_(25-35))-induced brain injury and neuroinflammation in Alzheimer's disease(AD) mice to provide an experimental basis for the treatment of AD by aqueous extract of Corni Fructus. Sixty C57BL/6J male mice were randomly divided into a sham group, a model group, a positive control group(huperizine A, 0.2 mg·kg~(-1)), a low-dose aqueous extract of Corni Fructus group(1.3 g·kg~(-1)), a medium-dose aqueous extract of Corni Fructus group(2.6 g·kg~(-1)), and a high-dose aqueous extract of Corni Fructus group(5.2 g·kg~(-1)). The AD model was induced by lateral ventricular injection of Aβ_(25-35) in mice except for those in the sham group, and AD model mice were treated with corresponding drugs by gavage for 24 days. The behavioral test was performed one week before animal dissection. Hematoxylin-eosin(HE) staining was performed to observe the morphology of neurons in the hippocampal region. Flow cytometry was used to detect the apoptosis level of primary hippocampal cells in mice. ELISA kits were used to detect the levels of β-amyloid protein 1-42(Aβ_(1-42)) and phosphorylated microtubule-associated protein Tau(p-Tau) in mouse brain tissues. Immunofluorescence and Western blot were used to detect the expression of related proteins in mouse brain tissues. MTT assay was used to detect the effect of compounds in aqueous extract of Corni Fructus on Aβ_(25-35)-induced N9 cell injury. Molecular docking was employed to analyze the interactions of caffeic acid, trans-p-hydroxy cinnamic acid, isolariciresinol-9'-O-β-D-glucopyranoside, esculetin, and(+)-lyoniresinol with β-amyloid precursor protein(APP), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α). Aqueous extract of Corni Fructus could improve the learning and memory abilities of Aβ_(25-35)-induced mice by increasing the duration of the autonomous activity, the rate of autonomous alternation, the preference coefficient, and the discrimination coefficient, and reduce Aβ_(25-35)-induced brain injury and neuroinflammation in mice by increasing the expression levels of interleukin-10(IL-10) and B-cell lymphoma-2(Bcl-2) in brain tissues, decreasing the expression levels of Aβ_(1-42), p-Tau, IL-6, TNF-α, cysteine aspartate-specific protease 3(caspase-3), cysteine aspartate-specific protease 9(caspase-9), and Bcl-2-associated X protein(Bax), and decreasing the number of activated glial cells in brain tissues. The results of cell experiments showed that esculetin and(+)-lyoniresinol could improve Aβ_(25-35)-induced N9 cell injury. Molecular docking results showed that caffeic acid, trans-p-hydroxy cinnamic acid, isolariciresinol-9'-O-β-D-glucopyranoside, esculetin, and(+)-lyoniresinol had good binding affinity with APP and weak binding affinity with IL-6 and TNF-α. Aqueous extract of Corni Fructus could ameliorate cognitive dysfunction and brain damage in Aβ_(25-35)-induced mice by reducing the number of apoptotic cells and activated glial cells in the brain and decreasing the expression level of inflammatory factors. Caffeic acid, trans-p-hydroxy cinnamic acid, isolariciresinol-9'-O-β-D-glucopyranoside, esculetin, and(+)-lyoniresinol may be the material basis for the anti-AD effect of aqueous extract of Corni Fructus.
Mice
;
Male
;
Animals
;
Alzheimer Disease/drug therapy*
;
Amyloid beta-Peptides/metabolism*
;
Cornus/metabolism*
;
Neuroinflammatory Diseases
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6
;
Aspartic Acid
;
Cysteine/therapeutic use*
;
Molecular Docking Simulation
;
Mice, Inbred C57BL
;
Brain Injuries
;
Peptide Hydrolases
;
Disease Models, Animal
;
Mice, Transgenic

Result Analysis
Print
Save
E-mail