1.Association of SLC6A4 gene c.*670T>G polymorphism with the risk for asthma and peripheral blood cytological characteristics among ethnic Zhuang Chinese population.
Gao CHEN ; Jianguo XU ; Shuai WEI ; Minlv MENG ; Chen LAN ; Chunru ZHAO ; Yingjiao MA
Chinese Journal of Medical Genetics 2023;40(10):1228-1235
OBJECTIVE:
To assess the association of SLC6A4 gene c.*670T>G polymorphism with the risk for asthma and peripheral blood cytological characteristics among ethnic Zhuang Chinese from Guangxi, China.
METHODS:
From May 2017 to March 2020, 258 patients diagnosed with asthma and 244 healthy controls were recruited from the Affiliated Hospital of Youjiang Minzhu Medical College and the People's Hospital of Hechi. Genotypes of the c.*670T>G polymorphism were determined by Sanger sequencing. Flow cytometry was used in combination with an electrical impedance method for the counting and classification of peripheral blood cells.
RESULTS:
Compared with the T allele, the G allele of the c.*670T>G polymorphism was associated with the risk for asthma in the population (OR = 1.54, 95%CI = 1.15-2.06; P = 0.004). Compared with the GT and TT genotypes, homozygous GG genotype also comprised a risk factor (OR = 1.66, 95%CI = 1.16-2.38; P = 0.005). Stratification of the risk factors showed that the homozygous GG genotype has increased the risk of asthma in males and urban residents (P < 0.01). The erythrocyte, hemoglobin and platelet counts of the asthma group were significantly higher than the control group (P < 0.001). The GG, GT and TT genotypes have respectively accounted for 82.35%, 17.65% and 0% of the samples with platelets exceeding the normal value. The overall platelet level of GG genotype was higher than GT+TT genotype (P < 0.05). The significant association was verified by the false positive report probability, and at a prior probability level of 0.1, G vs. T false positive probability was 0.071, and GG vs. GT+TT false positive probability was 0.153.
CONCLUSION
The GG genotype of the c.*670T>G polymorphism is associated with the risk for asthma among ethnic Zhuang Chinese from northwest Guangxi. Above finding has also enriched the genotypic data and peripheral blood phenotype for this polymorphism.
Male
;
Humans
;
East Asian People
;
China
;
Genotype
;
Alleles
;
Asthma/genetics*
;
Serotonin Plasma Membrane Transport Proteins
2.Association between HLA-DRB1 gene polymorphisms and genetic susceptibility of early-onset severe preeclampsia.
Chun-Chi LAI ; Lu-Lu ZHANG ; Meng-Ya SUN ; Jun-Fang SUN ; Hong JIANG
Chinese Journal of Contemporary Pediatrics 2023;25(10):1022-1027
OBJECTIVES:
To explore the correlation between the single nucleotide polymorphisms (SNP) of rs3135388, rs114293611 and rs142804168 of HLA-DRB1 gene and early-onset severe preeclampsia (sPE).
METHODS:
Blood samples were collected from 102 early-onset sPE mothers and their neonates (sPE group), as well as 120 normotensive mothers and their neonates (control group). Sanger sequencing was performed to compare the genotype distribution, allele frequencies, and differences in genotype distribution after maternal-infant compatibility between the two groups.
RESULTS:
Statistically significant differences in genotype distribution at rs114293611 of HLA-DRB1 gene were observed between sPE and control groups in both mothers and neonates (P<0.05). The frequency of the T allele at rs114293611 was higher in the sPE group of neonates than that in the control group (P<0.05), while no significant difference was found between the two groups of mothers (P>0.05). The maternal-infant genotype compatibility analysis showed significant differences in genotype distribution between sPE and control groups (P<0.05). There were no significant differences in genotype distribution and allele frequencies at rs3135388 and rs142804168 of HLA-DRB1 gene between the two groups of mothers and neonates (P>0.05).
CONCLUSIONS
The SNP at rs114293611 of HLA-DRB1 gene may be associated with the development of early-onset sPE in mothers. Maternal-infant genotype compatibility abnormality at rs114293611 of HLA-DRB1 gene may be a predisposition factor for the development of sPE.
Female
;
Pregnancy
;
Infant, Newborn
;
Humans
;
Genetic Predisposition to Disease
;
HLA-DRB1 Chains/genetics*
;
Pre-Eclampsia/genetics*
;
Gene Frequency
;
Genotype
;
Polymorphism, Single Nucleotide
;
Alleles
3.Molecular Mechanism of a Rhesus D Variant Individual with RHD*845A/1227A.
Xiu-Hua XIE ; Fan WU ; Qing DENG ; Nai-Bao ZHUANG
Journal of Experimental Hematology 2023;31(4):1150-1154
OBJECTIVE:
To explore the genetic mutation mechanism of a rare Rhesus D variant individual.
METHODS:
Regular serological assay was used for determination of Rh type for the sample. Indirect anti-human globulin test (IAT) was used to confirm the RhD antigen and screen the antibodies. D-screen reagent was used to analyze the RhD epitopes of the sample. RHD genotype and RHD zygosity testing of the sample were detected by palymerase chain reaction with sequence-specific primers (PCR-SSP). The full length coding region of RHD gene was sequenced. RHD mRNA was detected using reverse transcription polymerase chain reaction (RT-PCR). The PCR products were cloned and sequenced.
RESULTS:
The RhD blood group of the sample was determined as weak D, and the Rh phenotype was CcDEe. The antibody screening was negative. The sample tested with all monoclonal anti-Ds in D-screen showed the D epitope profiles as partial D types. The analysis of RHD gene sequence indicated that the individual with RHD c.845G/A and RHD c.1227G/A base heterozygosis. Three kinds of alternative splicing isoforms were obtained by TA cloning and sequencing.
CONCLUSION
The object has RHD c.845G/A and RHD c.1227G/A mutation. This heterozygous mutation is responsible for the low expression of RhD antigen on the red blood cells of the sample.
Alleles
;
Blood Group Antigens
;
Genotype
;
Mutation
;
Phenotype
;
Polymerase Chain Reaction
;
Rh-Hr Blood-Group System/genetics*
;
Humans
4.Study of the molecular characteristics of a Bweak phenotype due to a novel c.398T>C variant of the ABO gene.
Yanling YING ; Xiaozhen HONG ; Jingjing ZHANG ; Kairong MA ; Ying LIU ; Xianguo XU ; Ji HE ; Faming ZHU
Chinese Journal of Medical Genetics 2023;40(1):110-113
OBJECTIVE:
To explore the molecular mechanism for an individual with Bweak subtype.
METHODS:
Serological methods were used to identify the proband's phenotype. In vitro enzyme activity test was used to determine the activity of B-glycosyltransferase (GTB) in her serum. The genotype was determined by PCR amplification and direct sequencing of exons 5 to 7 and flanking sequences of the ABO gene. T-A cloning technology was used to isolate the haploids. The primary physical and chemical properties and secondary structure of the protein were analyzed with the ProtParam and PSIPRED software. Three software, including PolyPhen-2, SIFT, and PROVEAN, was used to analyze the effect of missense variant on the protein.
RESULTS:
Serological results showed that the proband's phenotype was Bweak subtype with anti-B antibodies presented in her serum. In vitro enzyme activity assay showed that the GTB activity of the subject was significantly reduced. Analysis of the haploid sequence revealed a c.398T>C missense variant on the B allele, which resulted in a novel B allele. The 398T>C variant has caused a p.Phe133S substitution at position 133 of the GTB protein. Based on bioinformatic analysis, the amino acid substitution had no obvious effect on the primary and secondary structure of the protein, but the thermodynamic energy of the variant protein has increased to 6.07 kcal/mol, which can severely reduce the protein stability. Meanwhile, bioinformatic analysis also predicted that the missense variant was harmful to the protein function.
CONCLUSION
The weak expression of the Bweak subtype may be attributed to the novel allele of ABO*B.01-398C. Bioinformatic analysis is helpful for predicting the changes in protein structure and function.
Female
;
Animals
;
ABO Blood-Group System/genetics*
;
Phenotype
;
Genotype
;
Exons
;
Alleles
5.Using Next-Generation Sequencing Technology to Confirm the HLA Rare Alleles Detected by PCR-SSOP.
Xian-Xin ZHONG ; Wang-Da WU ; Zhan-Rou QUAN ; Su-Qing GAO
Journal of Experimental Hematology 2023;31(1):203-208
OBJECTIVE:
To confirm the HLA genotypes of the samples including 4 cases of magnetic bead probe HLA genotyping result pattern abnormality and 3 cases of ambiguous result detected by PCR sequence-specific oligonudeotide probe (SSOP) method.
METHODS:
All samples derived from HLA high-resolution typing laboratory were detected by PCR-SSOP. A total of 4 samples of magnetic bead probe HLA genotyping result pattern abnormality and 3 samples of ambiguous result were further confirmed by PCR sequence-based typing (SBT) technology and next-generation sequencing (NGS) technology.
RESULTS:
A total of 4 samples of magnetic bead probe HLA genotyping result pattern abnormality were detected by PCR-SSOP method. The results of SBT and NGS showed that the HLA-A genotype of sample 1 did not match any known genotypes. NGS analysis revealed that the novel allele was different from the closest matching allele A*31:01:02:01at position 154 with G>A in exon 2, which resulting in one amino acid substitution at codon 28 from Valine to Methionine (p.Val28Met). The HLA-C genotype of sample 2 was C*03:119, 06:02, sample 3 was C*03:03, 07:137, and sample 4 was B*55:02, 55:12. A total of 3 samples with ambiguous result were initially detected by PCR-SSOP method. The re-examination results of SBT and NGS showed that the HLA-B genotype of sample 5 was B*15:58, 38:02, sample 6 was DRB1*04:05, 14:101, and sample 7 was DQB1*03:34, 05:02. Among them, alleles C*03:119, C*07:137 and DRB1*14:101 were not included in the Common and Well-documented Alleles (CWD) v2.4 of the Chinese Hematopoietic Stem Cell Donor Database.
CONCLUSION
The abnormal pattern of HLA genotyping results of magnetic probe by PCR-SSOP method suggests that it may be a rare allele or a novel allele, which needs to be verified by sequencing.
Humans
;
Alleles
;
Polymerase Chain Reaction
;
Genotype
;
High-Throughput Nucleotide Sequencing
;
Histocompatibility Testing/methods*
;
Technology
6.Analysis of genotypes on 850 newborns with SLC26A4 single-allele mutation and the phenotypes of those with second variant.
Li Hui HUANG ; Xue Lei ZHAO ; Xiao Hua CHENG ; Yi Ding YU ; Cheng WEN ; Yue LI ; Xian Lei WANG ; Xue Yuao WANG ; Yu RUAN ; Hui EN
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2023;58(2):117-125
Objective: To clarify the phenotypes of the newborns with SLC26A4 single-allele mutation in deafness genetic screening and second variant; to analyze the SLC26A4 genotype and hearing phenotype. Methods: 850 newborns born in Beijing from April 2015 to December 2019 were included and there were 468 males and 382 females. They received genetic deafness screening for 9 or 15 variants, with the result of SLC26A4 single-allele mutation. Firstly, three step deafness gene sequencing was adopted in this work, i.e., the first step was "SLC26A4 gene whole exons and splice sites" sequencing; the second step was "SLC26A4 gene promoter, FOXI1 gene and KCNJ10 gene whole exons" sequencing; and the third step was detection for "SLC26A4 gene copy number variation". Secondly, we collected the results of newborn hearing screening for all patients with the second mutation found in the three step test, and conducted audiological examinations, such as acoustic immittance, auditory brainstem response and auditory steady state response. Thirdly, for novel/VUS mutations, we searched the international deafness gene database or software, such as DVD, ClinVar and Mutation Taster, to predict the pathogenicity of mutations according to the ACMG guideline. Lastly, we analyzed the relationship between genotype and phenotype of newborns with SLC26A4 single allele mutation. Results: Among 850 cases, the median age of diagnosis was 4 months. In the first step, 850 cases were sequenced. A total of 32 cases (3.76%, 32/850) of a second variants were detected, including 18 cases (2.12%, 18/850) with identified pathogenic variants; 832 cases were sequenced and 8 cases of KCNJ10 gene missense variants were detected among the second step. No missense mutations in the FOXI1 gene and abnormal SLC26A4 gene promoter were detected; the third step sequencing results were all negative. Genotypes and hearing phenotypes included 18 cases combined with the second clear pathogenic variant, 16 cases (16/18) referred newborn hearing screening and 2 cases (2/18) passed in both ears; degree of hearing loss consisted of 18 profound ears (18/36), 13 severe ears (13/36) and 5 moderate ears (5/36); audiogram patterns comprised 17 high frequency drop ears (17/36), 14 flat ears (14/36), 3 undistinguished ears (3/36), and 2 U shaped ears (2/36); 11 cases underwent imaging examination, all of which were bilateral enlarged vestibular aqueduct. As for 22 cases of other genotypes, all passed neonatal hearing screening and the hearing diagnosis was normal, including 9 cases with VUS or possibly novel benign variants, 8 cases with KCNJ10 double gene heterozygous variants, and 5 cases with double heterozygous variants. Conclusions: The probability of individuals with SLC26A4 single-allele variant who merge with a second pathogenic variant is 2.12%, all of which are SNV, which can provide scientific basis for the genetic diagnosis and genetic counseling of SLC26A4 variants. Those who have merged with second pathogenic variant are all diagnosed with sensorineural hearing loss. Patients with KCNJ10 gene mutations do not manifest hearing loss during the infancy, suggesting the need for further follow-up.
Female
;
Humans
;
Male
;
Alleles
;
Deafness/genetics*
;
DNA Copy Number Variations
;
Forkhead Transcription Factors/genetics*
;
Genotype
;
Hearing Loss/genetics*
;
Hearing Loss, Sensorineural/genetics*
;
Mutation
;
Phenotype
;
Sulfate Transporters/genetics*
;
Vestibular Aqueduct
;
Infant, Newborn
;
Potassium Channels, Inwardly Rectifying/genetics*
7.Serological characteristics of ABO blood group and molecular genetic analysis of a Chinese pedigree with cisAB09 subtype.
Yuanyuan WANG ; Fangnian YANG ; Yuqing SHEN ; Yusong GUO ; Bo JIANG ; Xiaojun YANG
Chinese Journal of Medical Genetics 2023;40(6):750-755
OBJECTIVE:
To explore the serological characteristics of ABO blood group and molecular genetic mechanism for a Chinese pedigree with cisAB09 subtype.
METHODS:
A pedigree undergoing ABO blood group examination at the Department of Transfusion, Zhongshan Hospital Affiliated to Xiamen University on February 2, 2022 was selected as the study subjects. Serological assay was carried out to determine the ABO blood group of the proband and his family members. Activities of A and B glycosyltransferases in the plasma of the proband and his mother were measured with an enzymatic assay. Expression of A and B antigens on the red blood cells of the proband was analyzed by flow cytometry. Peripheral blood samples of the proband and his family members were collected. Following extraction of genomic DNA, exons 1 to 7 of the ABO gene and their flanking introns were sequenced, and Sanger sequencing of exon 7 was carried out for the proband, his elder daughter and mother.
RESULTS:
The results of serological assay suggested that the proband and his elder daughter and mother had an A2B phenotype, whilst his wife and younger daughter had an O phenotype. Measurement of plasma A and B glycosyltransferase activity suggested that the titers of B-glycosyltransferase activity were 32 and 256 for the proband and his mother, which were respectively below and above that of A1B phenotype-positive controls (128). Flow cytometry analysis showed that the expression of A antigen on the red blood cell surface of the proband has decreased, whilst the expression of B antigen was normal. Genetic sequencing confirmed that, in addition to an ABO*B.01 allele, the proband, his elder daughter and mother have harbored a c.796A>G variant in exon 7, which has resulted in substitution of the methionine at 266th position of the B-glycosyltransferase by valine and conformed to the characteristics of ABO*cisAB.09 allele. The genotypes of the proband and his elder daughter were determined as ABO*cisAB.09/ABO*O.01.01, his mother was ABO*cisAB.09/ABO*B.01, and his wife and younger daughter were ABO*O.01.01/ABO*O.01.01.
CONCLUSION
The c.796A>G variant of the ABO*B.01 allele has resulted in an amino acid substitution p.Met266Val, which probably underlay the cisAB09 subtype. The ABO*cisA B.09 allele encodes a special glycosyltransferase which can synthesize normal level of B antigen and low level of A antigen on the red blood cells.
Humans
;
ABO Blood-Group System/genetics*
;
Pedigree
;
East Asian People
;
Genotype
;
Phenotype
;
Alleles
;
Glycosyltransferases/genetics*
;
Molecular Biology
8.Research Progresses of Tri-Allelic Patterns in Autosomal STR in Forensic DNA Analysis.
Xiao-Yan MA ; Hong-Yu SUN ; Qing LI
Journal of Forensic Medicine 2023;39(3):240-246
Tri-allelic pattern in autosomal STR is a common abnormal typing phenomenon in forensic DNA analysis, which brings difficulties and uncertainties to the evaluation of the evidence weight in actual cases. This paper reviews the types, formation mechanism, occurrence frequency, genetic pattern and quantitative evaluation of evidence of the tri-allelic pattern in autosomal STR in forensic DNA analysis. This paper mainly explains the formation mechanism and genetic patterns based on different types of tri-allelic pattern. This paper also discusses the determination of tri-allelic pattern and the quantitative method of evidence evaluation in paternity testing and individual identification. This paper aims to provide references for scientific and standardized analysis of this abnormal typing phenomenon in forensic DNA analysis.
Alleles
;
DNA/genetics*
;
Forensic Medicine
;
Gene Frequency
;
Microsatellite Repeats
;
Humans
9.Serological Characteristics of Subtype A Caused by New A Allele Mutation and a Family Survey.
Fang QIU ; Qin-Li DING ; Jiao ZOU ; Li-Ping ZOU ; Yu CHEN ; Ying ZHU
Journal of Experimental Hematology 2023;31(2):509-512
OBJECTIVE:
In this study, the results of forward and reverse blood typing of a male patient diagnosed as bronchiectasis were inconsistent, which were type O and type A respectively. Multiple experiments including genotyping and sequencing and family investigation were carried out to determine the subtype of ABO blood group and explore the serological characteristics of this subtype.
METHODS:
Standard serological techniques were used to conduct forward and reverse typing, reverse blood typing enhancement test, H antigen identification, absorption-elution test, salivary blood group substances test, and PCR-SSP method for ABO genotyping and exon 6 and 7 sequencing.
RESULTS:
The proband's blood group was type O by forward typing, but antigen A could be detected by absorption-elution test, anti-A1 could be detected by reverse blood typing enhancement test, it was found that there was substance H but no substance A in saliva, and the serological characteristics were consistent with Ael subtype. Gene sequencing analysis showed that there was a c.625T>G base substitution on the basis of A102, which had never been reported before. Family survey showed that c.625T>G base substitution appeared in three generations of the family.
CONCLUSION
In this study, a new subtype A with Ael serological characteristics caused by c.625T>G mutation was identified. c.625T>G base substitution results in the weakening of A antigen, and this mutation can be stably passed down to future generations.
Humans
;
Male
;
Genotype
;
Phenotype
;
Alleles
;
Mutation
;
ABO Blood-Group System/genetics*
10.RHD Gene Analysis of A Blood Donor with Del Phenotype.
Zhi-Jiang WANG ; Mo-Zhen PENG ; Zhi-Hui ZHANG ; Qian LI ; Qiu-Jin LI ; Pin-Can SU
Journal of Experimental Hematology 2023;31(3):843-849
OBJECTIVE:
To analyze the RHD genotype of a blood donor with Del phenotype in Yunnan.
METHODS:
Rh serological phenotype was identified. RHD gene was detected by PCR-SSP typing, and its 10 exons were sequenced. Exon 9 was amplified for sequencing and analysis. RHD zygosity was detected.
RESULTS:
The Rh phenotype of this specimen was CcDelee. Genomic DNA exhibited a 1 003 bp deletion spanning from intron 8, across exon 9 into intron 9. The deletion breakpoints occurred between two 7-bp short tandem repeat sequences. There was no variation in the sequences of the remaining exons. The Rh hybridization box test showed that there was one RHD negative allele.
CONCLUSION
This specimen is Del type caused by deletion of RHD exon 9.
Humans
;
Blood Donors
;
Rh-Hr Blood-Group System/genetics*
;
China
;
Phenotype
;
Exons
;
Genotype
;
Alleles

Result Analysis
Print
Save
E-mail