1.Determination of toxicity and hypoglycemic effect in alloxan-induced diabetic mice of Manihot esculenta Crantz (Fam. Euphorbiaceae) aqueous crude leaf extract and its fractions.
Carmina Mae S. BAUTISTA ; Bryan M. AMANTE ; Edwin C. RUAMERO JR.
Acta Medica Philippina 2025;59(5):65-74
OBJECTIVE
Manihot esculenta (Crantz) leaves have been used for the management of diabetes based on cited ethnopharmacological studies. However, scientific evidence to support its efficacy is lacking. The aim of the study was to assess the cytotoxicity of the aqueous leaf extract and fractions of Manihot esculenta and its potential hypoglycemic effect on male Swiss albino mice.
METHODSThe cytotoxicity assay was necessary to screen which extract and fractions will be used for the in vivo hypoglycemic study.
Phytochemical screening identified the composition of the aqueous crude extract and its fractions. The phytochemical results showed the presence of alkaloids, anthraquinone glycosides, carbohydrates, phenolic glycosides, saponins, and flavonoids.
Cytotoxicity was screened using CytoTox 96® (Promega), a NonRadioactive Cytotoxicity Assay on liver cancer (HepG2) and normal kidney (HK-2) cell lines. Five samples were tagged as highly cytotoxic and were flagged for further assays. These samples were DCM fraction (100 ppm), n-Hexane fraction (1 and 10 ppm), Ethyl acetate fraction (1 ppm), and Aqueous fraction (100 ppm).
RESULTSThe hypoglycemic activity was examined in alloxan-induced diabetic mice using in vivo hypoglycemic study. The aqueous crude extract at dose levels of 200 mg/kg and 300 mg/kg body weight showed significant reduction in blood glucose levels compared to the diabetic control but not exceeding the results in the metformin treatment group. A p-value of 0.05 set a priori was used to consider whether the intervention had a statistically significant difference compared to the diabetic control.
CONCLUSIONThe effectiveness of aqueous crude extract in reduction of blood glucose in mice may be attributed to the synergistic effects of phytochemicals present, especially the alkaloids which were retained in the extract but were undetectable in the fractionated samples. The results of this study also support the findings of existing ethnopharmacological studies on M. esculenta leaf extract as a hypoglycemic agent.
Hypoglycemic Agents ; Ethnopharmacology ; Alkaloids
2.Determination of toxicity and hypoglycemic effect in alloxan-induced diabetic mice of Manihot esculenta Crantz (Fam. Euphorbiaceae) aqueous crude leaf extract and its fractions
Carmina Mae S. Bautista ; Bryan M. Amante ; Edwin C. Ruamero Jr.
Acta Medica Philippina 2024;58(Early Access 2024):1-10
		                        		
		                        			Objective:
		                        			Manihot esculenta (Crantz) leaves have been used for the management of diabetes based on cited ethnopharmacological studies. However, scientific evidence to support its efficacy is lacking. The aim of the study was to assess the cytotoxicity of the aqueous leaf extract and fractions of Manihot esculenta and its potential hypoglycemic effect on male Swiss albino mice.
		                        		
		                        			Methods:
		                        			The cytotoxicity assay was necessary to screen which extract and fractions will be used for the in vivo hypoglycemic study.
		                        		
		                        			:
		                        			Phytochemical screening identified the composition of the aqueous crude extract and its fractions. The phytochemical results showed the presence of alkaloids, anthraquinone glycosides, carbohydrates, phenolic glycosides, saponins, and flavonoids.
		                        		
		                        			:
		                        			Cytotoxicity was screened using CytoTox 96® (Promega), a NonRadioactive Cytotoxicity Assay on liver cancer (HepG2) and normal kidney (HK-2) cell lines. Five samples were tagged as highly cytotoxic and were flagged for further assays. These samples were DCM fraction (100 ppm), n-Hexane fraction (1 and 10 ppm), Ethyl acetate fraction (1 ppm), and Aqueous fraction (100 ppm).
		                        		
		                        			Results:
		                        			The hypoglycemic activity was examined in alloxan-induced diabetic mice using in vivo hypoglycemic study. The aqueous crude extract at dose levels of 200 mg/kg and 300 mg/kg body weight showed significant reduction in blood glucose levels compared to the diabetic control but not exceeding the results in the metformin treatment group. A p-value of 0.05 set a priori was used to consider whether the intervention had a statistically significant difference compared to the diabetic control.
		                        		
		                        			Conclusion
		                        			The effectiveness of aqueous crude extract in reduction of blood glucose in mice may be attributed to the synergistic effects of phytochemicals present, especially the alkaloids which were retained in the extract but were undetectable in the fractionated samples. The results of this study also support the findings of existing ethnopharmacological studies on M. esculenta leaf extract as a hypoglycemic agent.
		                        		
		                        		
		                        		
		                        			alkaloids
		                        			;
		                        		
		                        			hypoglycemic agents
		                        			;
		                        		
		                        			ethnopharmacology
		                        			
		                        		
		                        	
3.Heterologous biomimetic synthesis of active ingredients in traditional Chinese medicine:a new mode for protection and development of traditional Chinese medicine resources.
China Journal of Chinese Materia Medica 2023;48(9):2284-2297
		                        		
		                        			
		                        			Heterologous biomimetic synthesis of the active ingredients of traditional Chinese medicine(TCM) is a new mode of resource acquisition and has shown great potential in the protection and development of TCM resources. According to synthetic biology and by constructing biomimetic microbial cells and imitating the synthesis of active ingredients in medicinal plants and animals, the key enzymes obtained from medicinal plants and animals are scientifically designed and systematically reconstructed and optimized to realize the heterologous synthesis of the active ingredients in microorganisms. This method ensures an efficient and green acquisition of target products, and also achieves large-scale industrial production, which is conducive to the production of scarce TCM resources. Additiona-lly, the method playes a role in agricultural industrialization, and provides a new option for promoting the green and sustainable deve-lopment of TCM resources. This review systematically summarized the important progress in the heterologous biomimetic synthesis of TCM active ingredients from three research areas: biosynthesis of terpenoids, flavonoids, phenylpropanoids, alkaloids and other active ingredients, key points and difficulties in heterologous biomimetic synthesis, and biomimetic cells with complex TCM ingredients. This study facilitated the application of new generation of biotechnology and theory to the development of TCM.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Medicine, Chinese Traditional
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			Biomimetics
		                        			;
		                        		
		                        			Plants, Medicinal
		                        			;
		                        		
		                        			Alkaloids
		                        			
		                        		
		                        	
4.Chemical components of Magnoliae Officinalis Cortex of different origins and with different tree ages before and after being processed with ginger juice:a qualitative and quantitative analysis.
Jia-Qi LI ; Zhen-Zhen XUE ; Bin YANG
China Journal of Chinese Materia Medica 2023;48(9):2435-2454
		                        		
		                        			
		                        			This study aimed to investigate the impact of ginger juice on chemical profile of Magnoliae Officinalis Cortex(MOC) when they were processed together. Ultra-high-performance liquid chromatography coupled to quadrupole-orbitrap high-resolution mass spectrometry(UHPLC-Q-Orbitrap HRMS) was used for qualitative analysis of the chemical component of MOC samples before and after being processed with ginger juice. UPLC was performed to observe the content variation of eight main components in processed MOC. A total of 174 compounds were identified or tentatively deduced from processed and unprocessed MOC samples according to MS data obtained in positive and negative ion mode. After MOC was processed with ginger juice, the peak areas of most phenolics increased, while the peak areas of most phenylethanoid glycosides decreased; as for neolignans, oxyneolignans, other lignans and alkaloids, changes in the peak area were variable, and the peak areas of terpenoid-lignans varied little. Additionally, gingerols and diarylheptanoids were only detected in the processed MOC sample. The contents of syringin, magnoloside A, and magnoloside B decreased significantly in the processed MOC sample while no significant difference was observed in the contents of magnoflorine, magnocurarine, honokiol, obovatol, and magnolol. This study comprehensively explored the content variation of chemical components in processed and unprocessed MOC samples derived from different regions and with different tree ages using UPLC and UHPLC-Q-Orbitrap HRMS, and summarized the variation characteristics of various compounds. The results provide a data foundation for further research on pharmacodynamic substances of MOC processed with ginger juice.
		                        		
		                        		
		                        		
		                        			Ginger
		                        			;
		                        		
		                        			Trees
		                        			;
		                        		
		                        			Chromatography, High Pressure Liquid/methods*
		                        			;
		                        		
		                        			Alkaloids
		                        			;
		                        		
		                        			Lignans/analysis*
		                        			
		                        		
		                        	
5.Application of high-speed counter current chromatography in extraction and separation of alkaloids in natural products.
Hao-Hao GUO ; Jing WANG ; Yuan CHEN ; Xiu-Lan XIN ; Yu-Feng LIU
China Journal of Chinese Materia Medica 2023;48(8):1989-1999
		                        		
		                        			
		                        			Alkaloids, widespread in plants, have a series of pharmacological activities and have been widely used to treat various diseases. Because alkaloids are usually presented in multicomponent mixtures and are deeply low in content, they are very difficult to extract and separate by traditional methods. High-speed counter current chromatography(HSCCC) is a kind of liquid-liquid chromatography without solid support phase, which has the advantages of large injection volume, low cost, and no irreversible adsorption. Compared with the traditional methods of extraction and separation of alkaloids, HSCCC can ensure the separation of many different alkaloids at one time, with a high recovery and large amount. In this paper, the advantages and disadvantages of HSCCC compared with traditional separation methods were discussed and the solvent system and elution mode of HSCCC used to separate alkaloids in recent years were summarized by referring to the relevant literature to provide some references for the separation of alkaloids by HSCCC.
		                        		
		                        		
		                        		
		                        			Biological Products
		                        			;
		                        		
		                        			Countercurrent Distribution/methods*
		                        			;
		                        		
		                        			Chromatography, High Pressure Liquid/methods*
		                        			;
		                        		
		                        			Alkaloids/analysis*
		                        			;
		                        		
		                        			Solvents/chemistry*
		                        			
		                        		
		                        	
6.Research progress of Codonopsis Radix and prediction of its Q-markers.
Xiao-Yan LAN ; Li ZHOU ; Xiang LI ; Rui-Bin BAI ; Yi YU ; Cong-Kui TIAN ; Li-Ping KANG
China Journal of Chinese Materia Medica 2023;48(8):2020-2040
		                        		
		                        			
		                        			Codonopsis Radix is a traditional tonic medicine commonly used in China, which has the effects of strengthening the spleen and tonifying the lung, as well as nourishing blood and engendering liquid. The chemical constituents of Codonopsis species are mainly polyacetylenes, alkaloids, phenylpropanoids, lignans, terpenoids and saponins, flavonoids, steroids, organic acids, saccharides, and so on. Modern pharmacological studies showed that Codonopsis Radix also has a variety of pharmacological effects such as enhancing body immunity, protecting gastrointestinal mucosa and resisting ulcers, promoting hematopoietic function, regulating blood sugar, and delaying aging. In this paper, the chemical constituents of Codonopsis species and the pharmacological effects of Codonopsis Radix were summarized, and on this basis, the quality markers of Codonopsis Radix were analyzed. It was predicted that lobetyolin, tangshenoside I, codonopyrrolidium A, and the oligosaccharides were the possible Q-markers of Codonopsis Radix. This paper will provide scientific references for the quality evaluation and profound research and the development of Codonopsis Radix.
		                        		
		                        		
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			Codonopsis
		                        			;
		                        		
		                        			Alkaloids
		                        			;
		                        		
		                        			Medicine, Traditional
		                        			;
		                        		
		                        			Plant Roots
		                        			
		                        		
		                        	
7.Research progress on chemical structures and pharmacological effects of natural cytisine and its derivatives.
Qing-Qing ZHOU ; Xiao-Yan XIE ; Yan-Xia ZHANG ; Wu ZHOU ; Zha-Jun ZHAN ; Jin-Biao XU
China Journal of Chinese Materia Medica 2023;48(10):2679-2698
		                        		
		                        			
		                        			Cytisine derivatives are a group of alkaloids containing the structural core of cytisine, which are mainly distributed in Fabaceae plants with a wide range of pharmacological activities, such as resisting inflammation, tumors, and viruses, and affecting the central nervous system. At present, a total of 193 natural cytisine and its derivatives have been reported, all of which are derived from L-lysine. In this study, natural cytisine derivatives were classified into eight types, namely cytisine type, sparteine type, albine type, angustifoline type, camoensidine type, cytisine-like type, tsukushinamine type, and lupanacosmine type. This study reviewed the research progress on the structures, plant sources, biosynthesis, and pharmacological activities of alkaloids of various types.
		                        		
		                        		
		                        		
		                        			Alkaloids/chemistry*
		                        			;
		                        		
		                        			Quinolizines/pharmacology*
		                        			;
		                        		
		                        			Azocines/chemistry*
		                        			;
		                        		
		                        			Fabaceae
		                        			
		                        		
		                        	
8.Content determination of ten flavonoids and alkaloids in Gleditsiae Sinensis Fructus, Gleditsiae Fructus Abnormalis, and Gleditsiae Spina.
Hu-Min XIE ; Yue-Guang MI ; Xiao-Yan XU ; Meng-Xiao SUN ; Er-Wei LIU ; Xiu-Mei GAO ; Xue LI ; Wen-Zhi YANG
China Journal of Chinese Materia Medica 2023;48(7):1899-1907
		                        		
		                        			
		                        			To study the quality control of three traditional Chinese medicines derived from Gleditsia sinensis [Gleditsiae Sinensis Fructus(GSF), Gleditsiae Fructus Abnormalis(GFA), and Gleditsiae Spina(GS)], this paper established a multiple reaction monitoring(MRM) approach based on ultra-high performance liquid chromatography-triple quadrupole-linear ion-trap mass spectrometry(UHPLC-Q-Trap-MS). Using an ACQUITY UPLC BEH C_(18) column(2.1 mm × 100 mm, 1.7 μm), gradient elution was performed at 40 ℃ with water containing 0.1% formic acid-acetonitrile as the mobile phase running at 0.3 mL·min~(-1), and the separation and content determination of ten chemical constituents(e.g., saikachinoside A, locustoside A, orientin, taxifolin, vitexin, isoquercitrin, luteolin, quercitrin, quercetin, and apigenin) in GSF, GFA, and GS were enabled within 31 min. The established method could quickly and efficiently determine the content of ten chemical constituents in GSF, GFA, and GS. All constituents showed good linearity(r>0.995), and the average recovery rate was 94.09%-110.9%. The results showed that, the content of two alkaloids in GSF(2.03-834.75 μg·g~(-1)) was higher than that in GFA(0.03-10.41 μg·g~(-1)) and GS(0.04-13.66 μg·g~(-1)), while the content of eight flavonoids in GS(0.54-2.38 mg·g~(-1)) was higher than that in GSF(0.08-0.29 mg·g~(-1)) and GFA(0.15-0.32 mg·g~(-1)). These results provide references for the quality control of G. sinensis-derived TCMs.
		                        		
		                        		
		                        		
		                        			Flavonoids/analysis*
		                        			;
		                        		
		                        			Alkaloids
		                        			;
		                        		
		                        			Chromatography, High Pressure Liquid/methods*
		                        			;
		                        		
		                        			Mass Spectrometry
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			
		                        		
		                        	
9.Pharmacokinetics and tissue distribution of four alkaloids in Ermiao Pills and Sanmiao Pills in normal and arthritic model rats.
Bing-Jie LI ; Wen-Jing GE ; Peng-Tao SHAN ; Hui-Sen WANG ; Ming LIU ; Geng-Sheng LI ; Rui-Feng LIANG
China Journal of Chinese Materia Medica 2023;48(7):1943-1950
		                        		
		                        			
		                        			This work aimed to investigate the differences of pharmacokinetics and tissue distribution of four alkaloids in Ermiao Pills and Sanmiao Pills in normal and arthritic model rats. The rat model of arthritis was established by injecting Freund's complete adjuvant, and ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) in the positive ion multiple reaction monitoring(MRM) mode was used for the determination of four alkaloids in plasma and tissues of normal and arthritic rats after administration of Ermiao Pills and Sanmiao Pills, respectively. The differences in pharmacokinetics and tissue distribution of the four active components were compared, and the effect of Achyranthis Bidentatae Radix on the major components of Sanmiao Pills was explored. This study established an UPLC-MS/MS for simultaneous determination of four alkaloids, and the specificity, linearity, accuracy, precision, and stability of this method all met the requirements. Pharmacokinetics study found that as compared with normal rats, the AUC and C_(max) of phellodendrine, magnoflorine, berberine and palmatine in model rats were significantly decreased after administration of Ermiao Pills, the clearance rate CL/F was significantly increased, and the distribution and tissue/plasma concentration ratio of the four alkaloids in the liver, kidney, and joint were significantly reduced. Achyranthis Bidentatae Radix increased the AUC of phellodendrine, berberine, and palmatine, reduced the clearance rate, and significantly increased the distribution of the four alkaloids in the liver, kidney, and joints in arthritic rats. However, it had no significant effect on the pharmacokinetics and tissue distribution of the four alkaloids in normal rats. These results suggest that Achyranthis Bidentatae Radix may play a guiding role in meridian through increasing the tissue distribution of effective components in Sanmiao Pills under arthritis states.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Berberine/pharmacokinetics*
		                        			;
		                        		
		                        			Tissue Distribution
		                        			;
		                        		
		                        			Chromatography, Liquid
		                        			;
		                        		
		                        			Tandem Mass Spectrometry/methods*
		                        			;
		                        		
		                        			Drugs, Chinese Herbal/pharmacokinetics*
		                        			;
		                        		
		                        			Alkaloids/pharmacokinetics*
		                        			;
		                        		
		                        			Chromatography, High Pressure Liquid/methods*
		                        			;
		                        		
		                        			Arthritis
		                        			
		                        		
		                        	
10.Characterization and identification of alkaloids in Phellodendri Chinensis Cortex and Phellodendri Amurensis Cortex based on UHPLC-IM-Q-TOF-MS.
Shan-Shan WEN ; Ping LI ; Wen GAO
China Journal of Chinese Materia Medica 2023;48(12):3294-3307
		                        		
		                        			
		                        			A strategy combining collision cross section(CCS) prediction and quantitative structure-retention relationship(QSRR) model for quinoline and isoquinoline alkaloids was established based on UHPLC-IM-Q-TOF-MS and applied to Phellodendri Chinensis Cortex and Phellodendri Amurensis Cortex. The strategy included the following three steps.(1) The molecular features were extracted by the "find features" algorithm.(2) The potential quinoline and isoquinoline alkaloids were screened by filtering the original characteristic ions extracted from Phellodendri Chinensis Cortex and Phellodendri Amurensis Cortex by the established CCS vs m/z prediction interval.(3) According to the retention time of candidate compounds predicted by QSRR model, the chemical constituents were identified in combination with the characteristic fragment ions and pyrolysis law of secondary mass spectrometry. With the strategy, a total of 80 compounds were predicted, and 15 were identified accurately. The strategy is effective for the identification of small analogs of traditional Chinese medicine.
		                        		
		                        		
		                        		
		                        			Chromatography, High Pressure Liquid
		                        			;
		                        		
		                        			Algorithms
		                        			;
		                        		
		                        			Alkaloids
		                        			;
		                        		
		                        			Isoquinolines
		                        			;
		                        		
		                        			Quinolines
		                        			
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail