1.Dexmedetomidine improves alcohol withdrawal symptom via activating α2 adrenergic receptor in rat hippocampus.
Ting ZENG ; Hong-Yan ZHANG ; Xin ZHAO ; Yan LIU ; Yan-Zhong GUAN
Acta Physiologica Sinica 2022;74(4):541-547
The purpose of this study was to investigate the effects of α2 adrenergic receptor agonist dexmedetomidine on withdrawal symptoms in alcohol-dependent rats and the underlying mechanism, so as to provide a scientific basis for the treatment of alcohol withdrawal syndrome (AWS). Adult Sprague-Dawley (SD) male rats were orally administered with 6% aqueous alcohol continuously for 28 d to establish alcohol drinking model, and then stopped drinking to induce AWS. Enzyme-linked immunosorbent assay (ELISA) was used to determine the content of norepinephrine (NE) in the locus coeruleus and hippocampus of rats. Dexmedetomidine (5, 10, and 20 μg/kg) was intraperitoneally injected respectively when the rats showed significant AWS. In some rats, α2 adrenergic receptor antagonist yohimbine was injected into hippocampus in advance. The results showed that, compared with the control group, the 6 h withdrawal group exhibited significantly increased AWS score and amount of repeat drinking. The NE contents in hippocampus and locus coeruleus of the last drinking and the 6 h withdrawal groups were significantly increased compared with those of the control group. Dexmedetomidine intervention significantly decreased AWS score and hippocampus NE content in the 6 h withdrawal group, while yohimbine could reverse these effects of dexmedetomidine. These results suggest that dexmedetomidine might improve the withdrawal symptoms in alcohol-dependent rats via activating α2 adrenergic receptor.
Adrenergic alpha-2 Receptor Agonists/therapeutic use*
;
Alcoholism/drug therapy*
;
Animals
;
Dexmedetomidine/therapeutic use*
;
Hippocampus/metabolism*
;
Male
;
Norepinephrine
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Adrenergic, alpha-2/metabolism*
;
Substance Withdrawal Syndrome/drug therapy*
;
Yohimbine/pharmacology*
2.Orexin might Predict Status of Alcohol Dependence.
Jian-She PAN ; Ke ZHENG ; Jia-Hong LIU ; Zhi-Yong GAO ; Yu-Gao YE ; Min-Jie YE ; Wei TANG ; Lin-Jing LIU ; Cheng ZHU
Chinese Medical Journal 2018;131(23):2866-2867
Alcoholism
;
metabolism
;
pathology
;
Animals
;
Humans
;
Orexins
;
metabolism
3.Alcohol Consumption, Aldehyde Dehydrogenase 2 Gene Polymorphisms, and Cardiovascular Health in Korea.
Min Jeong SHIN ; Yoonsu CHO ; George DAVEY SMITH
Yonsei Medical Journal 2017;58(4):689-696
Alcohol consumption is a serious health issue in Korea in terms of the amount consumed and the behavior related to its consumption. Aldehyde dehydrogenase 2 (ALDH2) is a key enzyme in alcohol metabolism that degrades acetaldehyde to nontoxic acetic acid. The enzyme is coded by the ALDH2 gene, which is commonly polymorphic in East Asian populations. A point mutation in the ALDH2 gene (the rs671 allele) yields an inactive form of ALDH2 that causes acetaldehyde accumulation in the body after alcohol consumption, thereby inhibiting normal alcohol metabolism. Individuals who are homozygous for polymorphism in ALDH2 tend to refrain from drinking alcohol, decreasing their chances of developing alcoholism and exposure to the associated risks. Mendelian randomization (MR) studies have demonstrated that alcohol consumption predicted by ALDH2 genotype is causally related to cardiovascular risks. Moreover, recent MR studies suggest that the ALDH2 variant has mechanistic effects on some disease outcomes or mortality through increased blood levels of acetaldehyde, showing differences therein between heterozygotes (ALDH2*2*2) and homozygotes (ALDH2*1*2) in those who consume alcohol. Accordingly, consideration of ALDH2 genotype in alcohol prevention programs is warranted. In conclusion, strategies that incorporate genetic information and provide an evidential basis from which to help people make informed decisions on alcohol consumption are urgently required.
Acetaldehyde
;
Acetic Acid
;
Alcohol Drinking*
;
Alcoholism
;
Aldehyde Dehydrogenase*
;
Asian Continental Ancestry Group
;
Drinking
;
Genotype
;
Heterozygote
;
Homozygote
;
Humans
;
Korea*
;
Mendelian Randomization Analysis
;
Metabolism
;
Mortality
;
Point Mutation
;
Random Allocation
4.Disulfiram Induced Psychosis.
Satyakam MOHAPATRA ; Nihar Ranjan RATH
Clinical Psychopharmacology and Neuroscience 2017;15(1):68-69
Disulfiram is the commonly prescribed drug for the treatment of alcohol dependence. It's major metabolite (diethyldithiocarbamate) is an inhibitor of dopamine-betahydroxylase, an enzyme that catalyzes the metabolism of dopamine to norepinephrine resulting in psychosis. We recommend that disulfiram should be used at the lowest effective dose, possibly 250 mg daily and caution should be taken while prescribing disulfiram for patients with personal and familial antecedents of psychosis.
Alcoholism
;
Disulfiram*
;
Dopamine
;
Humans
;
Metabolism
;
Norepinephrine
;
Psychotic Disorders*
5.Relationship between the Expression of α-syn and Neuronal Apoptosis in Brain Cortex of Acute Alcoholism Rats.
Fan LI ; Yue ZHANG ; Shu Ling MA
Journal of Forensic Medicine 2016;32(6):406-409
OBJECTIVES:
To observe the changes of expression of α-synuclein (α-syn) and neuronal apoptosis in brain cortex of acute alcoholism rats and to explore the mechanism of the damage caused by ethanol to the neurons.
METHODS:
The model of acute alcoholism rat was established by 50% alcohol gavage. The α-syn and caspase-3 were detected by immunohistochemical staining and imaging analysis at 1 h, 3 h, 6 h and 12 h after acute alcoholism. The number of positive cell and mean of optical density were detected and the trend change was analyzed. The variance analysis and t-test were also performed.
RESULTS:
The number of α-syn positive cell and average optical density in brain cortex of acute alcoholism rat increased significantly and peaked at 6 hour with a following slight decrease at 12 h, but still higher than the groups at 1 h and 3 h. Within 12 hours after poisoning, the number of caspase-3 positive cell and average optical density in brain cortex of rats gradually increased.
CONCLUSIONS
The abnormal aggregation of α-syn caused by brain edema and hypoxia may participate the early stage of neuronal apoptosis in brain cortex after acute alcoholism.
Alcoholism/pathology*
;
Animals
;
Apoptosis
;
Brain Edema/pathology*
;
Caspase 3/metabolism*
;
Cerebral Cortex/pathology*
;
Ethanol
;
Hypoxia/pathology*
;
Neurons/pathology*
;
Rats
;
alpha-Synuclein/metabolism*
6.Effect of improper diets on blood viscosity in SD rats in high-salt and fat diet and alcohol abuse simulation model.
Dan-dan PAN ; Jian-li GAO ; Su-hong CHEN ; Qi-jing TANG ; En-wei ZHU ; Gui-yuan LV
China Journal of Chinese Materia Medica 2015;40(8):1560-1564
OBJECTIVETo observe the effect of composite factors, like long-term high-salt & fat diet and alcohol abuse on blood viscosity and blood pressure in rats, and compare with a model induced by high molecular dextran, in order to build a chronic hyperviscosity aminal model which is similar to human hyperviscosity in clinic and lay a foundation for efficacy evaluation on traditional Chinese medicines.
METHODMale SD rats were randomly divided into the normal group, the high molecular dextran (HMD) group and the high salt & fat and alcohol (HSFA) group. The HMD group was given normal diet and water for 23 day and then 10% HMD through tail vein for 5 days. The HSFA group was fed with high salt and high fat diets every day and alcohol for 20 h x d(-1) for 13 weeks. After the modeling, whole blood viscosity and plasma viscosity were measured in the 5th, 8th and 11th week. Blood pressure was measured in the 5d, 7h, and 10th week. Red cell count (RBC) and hematocrit (HCT) were measured in the 11th week. PAgT, Fb, ET-1, NO, PGI, TXA2 contents of the normal group and the HSFA group were measured in the 13th week, and IECa21 content was measured with flow cytometry. Result: After the modeling, the HMD group was in good conditions with glossy hairs and active behaviors. The HSFA group was depressed with withered hairs and less activities. During the 5th-11th weeks, the HMD group and the HSFA group showed higher values in high and low shear whole blood viscosity (WBV) than the normal control group. The plasma viscosity (PV) of HMD rats was significantly increased only in the 5th week, and that of HSFA rats significantly increased in the 8"' and 11th week, particularly in the 11'h week. In the 111h week, the HSFA group showed significant increases in RBC and HCT. After the modeling, the blood pressure of HMD rats showed no significant changes, but the blood pressure of HSFA rats significantly increased during 7' and 101h weeks, particularly in the 10"' week. In the 13th week, PAgT, IECa2+, Fb, ET-1 of HSFA rats significantly increased, but with decreases in NO and PGI2.
CONCLUSIONLong-term high salt & fat and alcohol diets can cause abnormal blood viscosity in rats. WBV significantly increased since the 5th week in rats, and PV increased since the 8th week. The mechanism for increasing BV may be: (1) increases in RBC, HCT, and IECa2+, (2) PAgT increase, (3) Fb content increase, or (4) TXA2/PGI2, ET-1/NO imbalance. Although the modeling time with the method is longer than that with the HMD method, the model is more stable and moderate, and could lead to abnormal increases in WBV and PV; Whereas the HMD method only induced transient increase in plasma viscosity and abnormal increase in SBP. The model is more similar to traditional Chinese medicine syndromes and pathogenesis, with higher value for studies on efficacy of traditional Chinese medicines.
Alcoholism ; blood ; metabolism ; Animals ; Blood Pressure ; Blood Viscosity ; Diet, High-Fat ; adverse effects ; Disease Models, Animal ; Ethanol ; adverse effects ; metabolism ; Humans ; Male ; Rats ; Rats, Sprague-Dawley ; Sodium Chloride, Dietary ; adverse effects ; metabolism
7.Effects of polydatin on learning and memory and Cdk5 kinase activity in the hippocampus of rats with chronic alcoholism.
Xin-juan LI ; Yan ZHANG ; Chun-yang XU ; Shuang LI ; Ai-lin DU ; Li-bin ZHANG ; Rui-ling ZHANG
Chinese Journal of Applied Physiology 2015;31(2):117-120
OBJECTIVETo observe the effects of polydatin on learning and memory and cyclin-dependent kinase 5 (Cdk5) kinase activity in the hippocampus of rats with chronic alcoholism.
METHODSForty rats were randomly divided into 4 groups: control group, chronic alcoholism group, low and high polydatin group. The rat chronic alcoholism model was established by ethanol 3.0 g/(kg · d) (intragastric administration). The abstinence scoring was used to evaluate the rats withdrawal symptoms; cognitive function was measured by Morris water maze experiment; Cdk5 protein expression in the hippocampus was detected by immunofluorescence; Cdk5 kinase activity in the hippocampus was detected by liquid scintillation counting method.
RESULTSThe abstinence score, escape latency, Cdk5 kinase activity in chronic alcoholism group rats were significantly higher than those of control group (P < 0.05). The abstinence score, escape latency in high polydatin group rats were significantly lower than those of chronic alcoholism group (P < 0.05); Cdk5 kinase activity in high and low polydatin group rats was significantly lower than that of chronic alcoholism group( P < 0.05); immunofluorescence showed that the Cdk5 positive cells of chronic alcoholism group were significantly increased compared with control group (P < 0.05), and the Cdk5 positive cells of polydatin groups were significantly decreased compared with chronic alcoholism group ( P < 0.05).
CONCLUSIONPolydatin-reduced the chronic alcoholism damage may interrelate with regulation of Cdk5 kinase activity.
Alcoholism ; physiopathology ; Animals ; Cyclin-Dependent Kinase 5 ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; Glucosides ; pharmacology ; Hippocampus ; drug effects ; enzymology ; Learning ; drug effects ; Memory ; drug effects ; Rats ; Stilbenes ; pharmacology
8.The expression and significance of VIP and its receptor in the cochlea of different degrees of chronic alcoholism rats.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2015;29(14):1295-1298
OBJECTIVE:
To determine whether chronic alcoholism alters the expression levels of Vasoactive intestinal polypeptide (VIP) and its receptor (VIPR1) in the cochlea of chronic alcoholism rats.
METHOD:
We measured their expression levels in 30 SD rats, in which we created models of different degrees of chronic alcoholism. We investigated the presence of the mRNA of VIP in the cochlea of chronic alcoholism rats and controls by reverse transcription-polymerase chain reaction (RT-PCR) method. We investigated the presence of proteins of VIPR1 in poisoned rats and controls by western blot. We also evaluated the local distribution of VIP cells by immunohistochemistry.
RESULT:
We found that the levels of VIP and VIPR1 were downregulated in the chronic alcoholism groups compared to the controls group. The differences in some expression levels were significant different between chronic alcoholism rats and control rats. Moreover, at different degrees of alcohol poisoning in rats, the contents of VIP and VIPR1 differed. Decreased levels of VIP and VIPR1 were detected in the deep chronic alcoholism group compared to the group with low-degree poisoning (P < 0.05). In spiral ganglion cell plasm the expression of VIP and VIPR1 had no significant difference in three groups (P > 0.05).
CONCLUSION
These results suggest that VIP and VIPR1 play an important role in the auditory function in rats with chronic alcoholism. Chronic alcoholism may cause a peptide hormone secretion imbalance in the auditory system, eventually leading to hearing loss.
Alcoholism
;
metabolism
;
Animals
;
Cochlea
;
metabolism
;
Disease Models, Animal
;
Down-Regulation
;
RNA, Messenger
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Vasoactive Intestinal Polypeptide, Type I
;
metabolism
;
Spiral Ganglion
;
Vasoactive Intestinal Peptide
;
metabolism
9.Relation between expression of cerebral beta-APP in the chronic alcoholism rats and death caused by TSAH.
Lai WEI ; Huai-Cheng LEI ; Xiao-Jun YU ; Xiao-Ping LAI ; Hong QIAN ; Xiao-Hu XU ; Fang-Cheng ZHU
Journal of Forensic Medicine 2013;29(2):91-95
OBJECTIVE:
By observing the cerebral beta-amyloid precursor protein (beta-APP) expression in the chronic alcoholism rats with slight cerebral injury, to discuss the correlation of chronic alcoholism and death caused by traumatic subarachnoid haemorrhage (TSAH).
METHODS:
Sixty male SD rats were randomly divided into watering group, watering group with strike, alcoholism group and alcoholism group with strike. Among them, the alcohol was used for continuous 4 weeks in alcoholism groups and the concussion was made in groups with strike. In each group, HE staining and immunohistochemical staining of the cerebral tissues were done and the results were analyzed by the histopathologic image system.
RESULTS:
In watering group, there was no abnormal. In watering group with strike, mild neuronic congestion was found. In alcoholism group, vascular texture on cerebral surface was found. And the neurons arranged in disorder with dilated intercellular space. In alcoholism group with strike, diffuse congestion on cerebral surface was found. And there was TSAH with thick-layer patches around brainstem following irregular axonotmesis. The quantity of beta-APP IOD in alcoholism group was significantly higher in the frontal lobe, hippocampus, cerebellum, brainstem than those in watering group with strike and alcoholism group with strike.
CONCLUSION
The cerebral tissues with chronic alcoholism, due to the decreasing tolerance, could cause fatal TSAH and pathological changes in cerebral tissues of rats under slight cerebral injury.
Alcoholism/pathology*
;
Amyloid beta-Protein Precursor/metabolism*
;
Animals
;
Brain/pathology*
;
Brain Concussion/pathology*
;
Disease Models, Animal
;
Ethanol/adverse effects*
;
Male
;
Neurons/pathology*
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Subarachnoid Hemorrhage, Traumatic/pathology*

Result Analysis
Print
Save
E-mail