1.Research progress on the relationship between air pollution and gestational diabetes.
Xiao Ling ZENG ; Qing CHEN ; Heng YANG ; Jia CAO ; Ni Ya ZHOU
Chinese Journal of Preventive Medicine 2023;57(2):159-165
Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications and has serious implications for the health of mothers and their offspring. In recent years, studies have confirmed that air pollution is one of the main risk factors for diabetes, and there is increasing evidence that air pollution exposure is closely related to the occurrence of gestational diabetes. However, current studies on the association between air pollutant exposure and the incidence of gestational diabetes are inconsistent, and the window period of pollutant exposure is still unclear. Limited mechanistic studies suggest that airborne particulate matter and gaseous pollutants may affect GDM through multiple mechanisms, including inflammation, oxidative stress, disruption of adipokine secretion, and imbalance of intestinal flora. This review summarizes the relationship between air pollutant exposure and the incidence of GDM in recent years, as well as the possible molecular mechanism of the occurrence and development of GDM caused by air pollutants, in order to provide scientific basis for preventing pollutant exposure, reducing the risk of GDM, improving maternal and fetal outcomes and improving the quality of the birth population.
Pregnancy
;
Female
;
Humans
;
Diabetes, Gestational/epidemiology*
;
Air Pollution/analysis*
;
Air Pollutants/analysis*
;
Particulate Matter/analysis*
;
Risk Factors
;
Maternal Exposure/adverse effects*
2.Ambient fine particulate matter and cardiopulmonary health risks in China.
Tiantian LI ; Yi ZHANG ; Ning JIANG ; Hang DU ; Chen CHEN ; Jiaonan WANG ; Qiutong LI ; Da FENG ; Xiaoming SHI
Chinese Medical Journal 2023;136(3):287-294
In China, the level of ambient fine particulate matter (PM 2.5 ) pollution far exceeds the air quality standards recommended by the World Health Organization. Moreover, the health effects of PM 2.5 exposure have become a major public health issue. More than half of PM 2.5 -related excess deaths are caused by cardiopulmonary disease, which has become a major health risk associated with PM 2.5 pollution. In this review, we discussed the latest epidemiological advances relating to the health effects of PM 2.5 on cardiopulmonary diseases in China, including studies relating to the effects of PM 2.5 on mortality, morbidity, and risk factors for cardiovascular and respiratory diseases. These data provided important evidence to highlight the cardiopulmonary risk associated with PM 2.5 across the world. In the future, further studies need to be carried out to investigate the specific relationship between the constituents and sources of PM 2.5 and cardiopulmonary disease. These studies provided scientific evidence for precise reduction measurement of pollution sources and public health risks. It is also necessary to identify effective biomarkers and elucidate the biological mechanisms and pathways involved; this may help us to take steps to reduce PM 2.5 pollution and reduce the incidence of cardiopulmonary disease.
Humans
;
Particulate Matter/analysis*
;
Air Pollution/adverse effects*
;
Risk Factors
;
Respiratory Tract Diseases
;
China/epidemiology*
;
Environmental Exposure/adverse effects*
3.Contribution of Ambient Air Pollution on Risk Assessment of Type 2 Diabetes Mellitus via Explainable Machine Learning.
Zhong Ao DING ; Li Ying ZHANG ; Rui Ying LI ; Miao Miao NIU ; Bo ZHAO ; Xiao Kang DONG ; Xiao Tian LIU ; Jian HOU ; Zhen Xing MAO ; Chong Jian WANG
Biomedical and Environmental Sciences 2023;36(6):557-560
4.Association between airborne particulate matter(PM 2.5) concentration and the incidence of allergic rhinitis in Shanghai.
Na SUN ; Jingrong GONG ; Yanan HAO ; Zhenfeng SUN ; Yu HUANG ; Yuejin YU ; Wei HUANG ; Lufang TIAN ; Dan LUO ; Wei TANG ; Kai FAN ; Shaoqing YU ; Ruxin ZHANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2023;37(6):434-441
Objective:To explore the impact of PM 2.5 concentration in Shanghai on the incidence of allergic rhinitis(AR) in the population, and provide strategies for early warning and prevention of AR. Methods:Collect daily average concentrations of atmospheric pollutants monitored in Shanghai from January 1, 2017 to December 31, 2019, and clinical data of AR patients from five hospitals in Shanghai during the same period. We used a time-series analysis additive Poisson regression model to analyze the correlation between PM 2.5 levels and outpatient attendance for AR patients. Results:During the study period, a total of 56 500 AR patients were included, and the daily average concentration of PM 2.5 was(35.28±23.07)μg/m³. There is a correlation between the concentration of PM 2.5 and the number of outpatient attendance for AR cases. There is a positive correlation between the daily average number of outpatient for AR and levels of PM 2.5 air pollution((P<0.05)) . We found that every 10 μg/m³ increase in PM 2.5, the impact of on the number of AR visits was statistically significant on the same day, the first day behind, and the second day behind, with the strongest impact being the exposure on the same day. Every 10 μg/m³ increases in PM 2.5, the number of outpatient visits increased by 0.526% on the same day(95%CI 1.000 50-1.010 04). Conclusion:The atmospheric PM 2.5 concentration in Shanghai is positively correlated with the number of outpatient for AR, and PM 2.5 exposure is an independent factor in the onset of AR. This provides an important theoretical basis for AR.
Humans
;
Particulate Matter/analysis*
;
Air Pollutants/adverse effects*
;
Incidence
;
China/epidemiology*
;
Air Pollution/adverse effects*
;
Rhinitis, Allergic/etiology*
5.Study on the association between air pollution and respiratory disease of primary school students in Chongqing City.
Yun Yun WU ; Zi Hao WANG ; Qi ZHANG ; Qun Ying LI
Chinese Journal of Preventive Medicine 2023;57(9):1447-1451
To analyze the association between exposure to air pollution and respiratory disease of primary school students in Chongqing City. Eight districts and counties were randomly selected based on the air pollution situation in Chongqing City. In each selected district and county, one primary school was randomly selected. A questionnaire survey was conducted on all primary school students in Grades 3-5 by the end of 2019. Air quality data from the nearest environmental monitoring sites were collected. A logistic regression model was used to analyze the impact of the living environment, lifestyle and air pollution on the respiratory disease of surveyed students. This study included 5 918 primary school students, with a prevalence rate of respiratory disease of 21.54%. The prevalence rates of boys and girls were 23.38% and 19.59%, respectively. The average Air quality index (AQI) of the surveyed school was 67, and the rates of exceeding standards of PM10, PM2.5, NO2 and O3 were 1.16%, 6.92%, 0.99% and 5.65%, respectively. The level of SO2 and CO did not exceed the standard. After adjusting for relevant factors, logistic regression analysis showed that primary school students in areas with high exposure to air pollution (OR=2.52), using air pollution related-chemicals at home (OR=1.47), passive smoking (OR=1.27), and keeping pets at home (OR=1.18) had a higher risk of respiratory disease (all P<0.05). In addition, the average annual values of AQI (OR=1.18), PM10 (OR=1.20), PM2.5 (OR=1.35), and NO2 (OR=1.11) increased the risk of respiratory diseases in primary school students (all P<0.05). In conclusion, the respiratory disease of primary school students in Chongqing City is related to the living environment, behavior habits and ambient air quality. The increased exposure concentration of PM10, PM2.5 and NO2 in air pollutants can lead to an increased risk of respiratory disease among primary school students.
Female
;
Humans
;
Male
;
Air Pollution/adverse effects*
;
Nitrogen Dioxide
;
Particulate Matter
;
Respiratory Tract Diseases/epidemiology*
;
Schools
;
Students
;
Child
6.Study on revision of standard limits for nitrogen dioxide in "Standards for indoor air quality(GB/T 18883-2022)" in China.
Qing Li ZHANG ; Ren Jie CHEN ; Hai Dong KAN
Chinese Journal of Preventive Medicine 2023;57(11):1766-1769
Nitrogen dioxide (NO2) is an important indoor air pollutant, with both outdoor and indoor sources contributing to indoor NO2 exposure levels. Considering the association of high NO2 exposure with adverse health effects, the Standards for indoor air quality (GB/T 18883-2022) have been revised to further restrict indoor NO2 limit values. The 1-h average concentration limit value for NO2 has been reduced from 0.24 mg/m3 to 200 μg/m3.This study analyzed the technical contents related to the determination of the limits of indoor NO2 in Standards for Indoor Air Quality (GB/T 18883-2022), including source, exposure level, health effects, and the process and evidence basis for determining the limit value. It also proposed prospects for the direction for the implementation of the indoor NO2 standard.
Humans
;
Air Pollution, Indoor/adverse effects*
;
Nitrogen Dioxide
;
Air Pollutants/analysis*
;
China
;
Air Pollution/adverse effects*
7.Study on the association between air pollution and respiratory disease of primary school students in Chongqing City.
Yun Yun WU ; Zi Hao WANG ; Qi ZHANG ; Qun Ying LI
Chinese Journal of Preventive Medicine 2023;57(9):1447-1451
To analyze the association between exposure to air pollution and respiratory disease of primary school students in Chongqing City. Eight districts and counties were randomly selected based on the air pollution situation in Chongqing City. In each selected district and county, one primary school was randomly selected. A questionnaire survey was conducted on all primary school students in Grades 3-5 by the end of 2019. Air quality data from the nearest environmental monitoring sites were collected. A logistic regression model was used to analyze the impact of the living environment, lifestyle and air pollution on the respiratory disease of surveyed students. This study included 5 918 primary school students, with a prevalence rate of respiratory disease of 21.54%. The prevalence rates of boys and girls were 23.38% and 19.59%, respectively. The average Air quality index (AQI) of the surveyed school was 67, and the rates of exceeding standards of PM10, PM2.5, NO2 and O3 were 1.16%, 6.92%, 0.99% and 5.65%, respectively. The level of SO2 and CO did not exceed the standard. After adjusting for relevant factors, logistic regression analysis showed that primary school students in areas with high exposure to air pollution (OR=2.52), using air pollution related-chemicals at home (OR=1.47), passive smoking (OR=1.27), and keeping pets at home (OR=1.18) had a higher risk of respiratory disease (all P<0.05). In addition, the average annual values of AQI (OR=1.18), PM10 (OR=1.20), PM2.5 (OR=1.35), and NO2 (OR=1.11) increased the risk of respiratory diseases in primary school students (all P<0.05). In conclusion, the respiratory disease of primary school students in Chongqing City is related to the living environment, behavior habits and ambient air quality. The increased exposure concentration of PM10, PM2.5 and NO2 in air pollutants can lead to an increased risk of respiratory disease among primary school students.
Female
;
Humans
;
Male
;
Air Pollution/adverse effects*
;
Nitrogen Dioxide
;
Particulate Matter
;
Respiratory Tract Diseases/epidemiology*
;
Schools
;
Students
;
Child
8.Study on revision of standard limits for nitrogen dioxide in "Standards for indoor air quality(GB/T 18883-2022)" in China.
Qing Li ZHANG ; Ren Jie CHEN ; Hai Dong KAN
Chinese Journal of Preventive Medicine 2023;57(11):1766-1769
Nitrogen dioxide (NO2) is an important indoor air pollutant, with both outdoor and indoor sources contributing to indoor NO2 exposure levels. Considering the association of high NO2 exposure with adverse health effects, the Standards for indoor air quality (GB/T 18883-2022) have been revised to further restrict indoor NO2 limit values. The 1-h average concentration limit value for NO2 has been reduced from 0.24 mg/m3 to 200 μg/m3.This study analyzed the technical contents related to the determination of the limits of indoor NO2 in Standards for Indoor Air Quality (GB/T 18883-2022), including source, exposure level, health effects, and the process and evidence basis for determining the limit value. It also proposed prospects for the direction for the implementation of the indoor NO2 standard.
Humans
;
Air Pollution, Indoor/adverse effects*
;
Nitrogen Dioxide
;
Air Pollutants/analysis*
;
China
;
Air Pollution/adverse effects*
9.Cardiovascular and Cerebrovascular Diseases Induced by Air Pollution.
Yi-Cheng YANG ; Jia-Wen LI ; Bo SUN ; Yi-Lin CHEN ; Shu-Qun SHEN ; Chao YUAN
Acta Academiae Medicinae Sinicae 2022;44(2):318-323
Air pollution has severe detrimental effects on public health.A substantial number of studies have demonstrated that air pollution exposure is a risk factor for the occurrence of cardiovascular and cerebrovascular diseases and a cause of non-communicable diseases.Both long-term and short-term exposure to air pollution are associated with respiratory diseases,stroke,coronary artery disease,and diabetes.Aiming to better understand the association,we reviewed the latest studies about the association of air pollution with cardiovascular and cerebrovascular diseases,especially stroke,coronary heart disease,arrhythmia,hypertension,and heart failure,and summarized the underlying mechanisms of the health damage caused by long-term and short-term exposure to air pollution.
Air Pollutants/analysis*
;
Air Pollution/adverse effects*
;
Cardiovascular Diseases/etiology*
;
Cerebrovascular Disorders/etiology*
;
Environmental Exposure/analysis*
;
Humans
;
Particulate Matter/analysis*
;
Stroke/complications*
10.A time-series study on the association of ambient temperature with daily outpatient visits of eczema in Huizhou city.
Ying Yin LIU ; Zhi Xing LI ; Zi Jina TAN ; Wen FANG ; Hao Min TAN ; Di FU ; Zhong Guo HUANG ; Jia Wei LIU ; Tao LIU ; Guan Hao HE ; Sui ZHU ; Wen Jun MA
Chinese Journal of Preventive Medicine 2022;56(10):1423-1428
Objective: To explore the impact of environmental temperature exposure on eczema visits. Methods: Eczema clinic data from January 1, 2016 to December 31, 2019 were collected from the Huizhou Dermatology Hospital, and data on meteorological factors (average daily temperature and relative humidity) for the same period were derived from 86 meteorological stations of the Guangdong Provincial Climate Center. A distributed lag nonlinear model (DLNM) was used to assess the lagged effect of environmental temperature exposure on eczema, and a natural smooth spline function was used to control the nonlinear confounding of humidity. Results: There were 254 053 eczema outpatient visits at the Huizhou Dermatology Hospital within four years, with an average of 173.89 visits per day. The relationship between daily average temperature and the number of visits was non-linear (U shape). The risk of eczema increased by 2.20% (1.19%-3.21%) for every 1 ℃ decrease for the low temperature, and increased by 2.35% (1.24%-3.5%) for every 1 ℃ increase for the high temperature. The effect of high temperature was greater than that of low temperature. In all cases, 1.60% (0.44%-2.68%) of eczema outpatient visits were attributed to low temperature and the attributable number was 4 065 (1 128-6 798), while 6.33% (1.40%-10.87%) of eczema outpatient visits were due to high temperature and the attributable number was 16 082 (3 557-27 616). Conclusion: Both high temperature and low temperature are associated with increased risk of eczema.
Humans
;
Air Pollution/adverse effects*
;
Temperature
;
Outpatients
;
Cities
;
Eczema/epidemiology*
;
China/epidemiology*
;
Air Pollutants/analysis*

Result Analysis
Print
Save
E-mail