2.Non-linear association between long-term air pollution exposure and risk of metabolic dysfunction-associated steatotic liver disease.
Wei-Chun CHENG ; Pei-Yi WONG ; Chih-Da WU ; Pin-Nan CHENG ; Pei-Chen LEE ; Chung-Yi LI
Environmental Health and Preventive Medicine 2024;29():7-7
BACKGROUND:
Metabolic Dysfunction-associated Steatotic Liver Disease (MASLD) has become a global epidemic, and air pollution has been identified as a potential risk factor. This study aims to investigate the non-linear relationship between ambient air pollution and MASLD prevalence.
METHOD:
In this cross-sectional study, participants undergoing health checkups were assessed for three-year average air pollution exposure. MASLD diagnosis required hepatic steatosis with at least 1 out of 5 cardiometabolic criteria. A stepwise approach combining data visualization and regression modeling was used to determine the most appropriate link function between each of the six air pollutants and MASLD. A covariate-adjusted six-pollutant model was constructed accordingly.
RESULTS:
A total of 131,592 participants were included, with 40.6% met the criteria of MASLD. "Threshold link function," "interaction link function," and "restricted cubic spline (RCS) link functions" best-fitted associations between MASLD and PM2.5, PM10/CO, and O3 /SO2/NO2, respectively. In the six-pollutant model, significant positive associations were observed when pollutant concentrations were over: 34.64 µg/m3 for PM2.5, 57.93 µg/m3 for PM10, 56 µg/m3 for O3, below 643.6 µg/m3 for CO, and within 33 and 48 µg/m3 for NO2. The six-pollutant model using these best-fitted link functions demonstrated superior model fitting compared to exposure-categorized model or linear link function model assuming proportionality of odds.
CONCLUSION
Non-linear associations were found between air pollutants and MASLD prevalence. PM2.5, PM10, O3, CO, and NO2 exhibited positive associations with MASLD in specific concentration ranges, highlighting the need to consider non-linear relationships in assessing the impact of air pollution on MASLD.
Humans
;
Nitrogen Dioxide
;
Cross-Sectional Studies
;
Air Pollution/analysis*
;
Air Pollutants/analysis*
;
Particulate Matter/analysis*
;
Liver Diseases
;
Environmental Exposure/analysis*
4.Association between airborne particulate matter(PM 2.5) concentration and the incidence of allergic rhinitis in Shanghai.
Na SUN ; Jingrong GONG ; Yanan HAO ; Zhenfeng SUN ; Yu HUANG ; Yuejin YU ; Wei HUANG ; Lufang TIAN ; Dan LUO ; Wei TANG ; Kai FAN ; Shaoqing YU ; Ruxin ZHANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2023;37(6):434-441
Objective:To explore the impact of PM 2.5 concentration in Shanghai on the incidence of allergic rhinitis(AR) in the population, and provide strategies for early warning and prevention of AR. Methods:Collect daily average concentrations of atmospheric pollutants monitored in Shanghai from January 1, 2017 to December 31, 2019, and clinical data of AR patients from five hospitals in Shanghai during the same period. We used a time-series analysis additive Poisson regression model to analyze the correlation between PM 2.5 levels and outpatient attendance for AR patients. Results:During the study period, a total of 56 500 AR patients were included, and the daily average concentration of PM 2.5 was(35.28±23.07)μg/m³. There is a correlation between the concentration of PM 2.5 and the number of outpatient attendance for AR cases. There is a positive correlation between the daily average number of outpatient for AR and levels of PM 2.5 air pollution((P<0.05)) . We found that every 10 μg/m³ increase in PM 2.5, the impact of on the number of AR visits was statistically significant on the same day, the first day behind, and the second day behind, with the strongest impact being the exposure on the same day. Every 10 μg/m³ increases in PM 2.5, the number of outpatient visits increased by 0.526% on the same day(95%CI 1.000 50-1.010 04). Conclusion:The atmospheric PM 2.5 concentration in Shanghai is positively correlated with the number of outpatient for AR, and PM 2.5 exposure is an independent factor in the onset of AR. This provides an important theoretical basis for AR.
Humans
;
Particulate Matter/analysis*
;
Air Pollutants/adverse effects*
;
Incidence
;
China/epidemiology*
;
Air Pollution/adverse effects*
;
Rhinitis, Allergic/etiology*
5.Association of greenness, nitrogen dioxide with the prevalence of hypertension among the elderly over 65 years old in China.
Jia Ming YE ; Jin Hui ZHOU ; Jun WANG ; Li hong YE ; Chen Feng LI ; Bing WU ; Li QI ; Chen CHEN ; Jia CUI ; Yi Qi QIU ; Si Xin LIU ; Fang Yu LI ; Yu Fei LUO ; Yue Bin LYU ; Lin YE ; Xiao Ming SHI
Chinese Journal of Preventive Medicine 2023;57(5):641-648
Objective: To investigate the association of mixed exposure to greenness and nitrogen dioxide(NO2) and hypertension among the older adults aged 65 years and over in China. Methods: The study subjects were from the Chinese Longitudinal Healthy Longevity Survey from 2017 to 2018. A total of 15 423 older adults aged 65 years and over meeting the criteria were finally included in the study. A questionnaire survey was used to collect information on demographic characteristics, lifestyle habits and self-reported prevalence of hypertension. Blood pressure values were obtained through physical examination. The level of normalized difference vegetation index(NDVI) was measured by the Medium-resolution Imaging Spectral Radiator(MODIS) of the National Aeronautics and Space Administration(NASA). The concentration of NO2 was from China's surface air pollutant data set. Meteorological data was from NASA MERRA-2. The exposure to NDVI and NO2 for each study subject was calculated based on the area within a 1 km radius around their residence. The association between mixed exposure of NDVI and NO2 as well as their interaction and hypertension in older adults was analyzed by using the multivariate logistic regression model. The restrictive cubic spline(RCS) function was used to explore the exposure-response relationship between greenness and NO2 and the risk of hypertension in study subjects. Results: The mean age of 15 423 older adults were (85.6±11.6). Women accounted for 56.3%(8 685/15 423) and 55.6%(8 578/15 423) lived in urban areas. The mean time of residence was (60.9±28.5) years. 59.8% of participants were with hypertension. The mean NDVI level was 0.41±0.13, and the mean NO2 concentration was (32.18±10.36) μg/cm3. The results of multivariate logistic regression analysis showed that NDVI was inversely and linearly associated with the hypertension in older adults, with the OR(95%CI) value of 0.959(0.928-0.992). Compared with the T1 group of NDVI, the risk of hypertension was lower in the T3 group, with the OR(95%CI) value of 0.852(0.769-0.944), and the trend test was statistically significant(P<0.05). Compared with the T1 group of NO2, the risk of hypertension was higher in the T2 and T3 groups, with OR(95%CI) values of 1.160(1.055-1.275) and 1.244(1.111-1.393), and the trend test was statistically significant (P<0.05). The result of the RCS showed that NDVI was inversely and linearly associated with hypertension in older adults. NO2 was nonlinearly associated with hypertension in older adults. The interaction analysis showed that NDVI and NO2 had a negative multiplicative interaction on the risk of hypertension, with OR(95%CI) value of 0.995(0.992-0.997). Conclusion: Exposure to greenness and NO2 are associated with hypertension in older adults.
Aged
;
Humans
;
Female
;
Nitrogen Dioxide
;
Air Pollution
;
Prevalence
;
Hypertension/epidemiology*
;
China/epidemiology*
;
Particulate Matter/analysis*
6.Progress in research of deaths and disease burden of major chronic diseases caused by indoor and outdoor air pollution in China.
Lin Ling YU ; Pin Pin LONG ; Wei Hong CHEN ; Tang Chun WU
Chinese Journal of Epidemiology 2023;44(5):699-704
Health damage including chronic disease caused by air pollution have attracted increasing attention. With the acceleration of industrialization and urbanization, the emission of air pollutants has increased, and its association with chronic diseases has become a research trending topic. Cardiovascular disease, cancer, diabetes, and chronic respiratory disease are the major chronic diseases, causing about 86.6% of the total deaths in China. The prevention and control of chronic diseases, especially the etiologic prevention, is a major public health issue related to national health. This article summarizes the recent progress in research of association of indoor and outdoor air pollution with all-cause mortality, the deaths and disease burden of four major chronic diseases, i.e. cardiovascular disease, cancer, diabetes, and chronic respiratory disease, and puts forward suggestions for the reduction of the burden caused by chronic diseases due to air pollution to provide a theoretical foundation to revise air quality standards in China.
Humans
;
Cardiovascular Diseases
;
Air Pollution
;
China
;
Cost of Illness
;
Chronic Disease
;
Respiratory Tract Diseases
7.Contribution of Ambient Air Pollution on Risk Assessment of Type 2 Diabetes Mellitus via Explainable Machine Learning.
Zhong Ao DING ; Li Ying ZHANG ; Rui Ying LI ; Miao Miao NIU ; Bo ZHAO ; Xiao Kang DONG ; Xiao Tian LIU ; Jian HOU ; Zhen Xing MAO ; Chong Jian WANG
Biomedical and Environmental Sciences 2023;36(6):557-560
8.Characteristics and Differences of Household Fine Particulate Matter Pollution Caused by Fuel Burning in Urban and Rural Areas in China.
Yu ZHANG ; Man CAO ; Xue-Yan HAN ; Tian-Jia GUAN ; Hui-Zhong SHEN ; Yuan-Li LIU
Acta Academiae Medicinae Sinicae 2023;45(3):382-389
Objective To explore the overall level,distribution characteristics,and differences in household fine particulate matter (PM2.5) pollution caused by fuel burning in urban and rural areas in China. Methods The relevant articles published from 1991 to 2021 were retrieved and included in this study.The data including the average concentration of household PM2.5 and urban and rural areas were extracted,and the stoves and fuel types were reclassified.The average concentration of PM2.5 in different areas was calculated and analyzed by nonparametric test. Results The average household PM2.5 concentration in China was (178.81±249.91) μg/m3.The mean household PM2.5 concentration was higher in rural areas than in urban areas[(206.08±279.40) μg/m3 vs. (110.63±131.16) μg/m3;Z=-5.45,P<0.001] and higher in northern areas than in southern areas[(224.27±301.66) μg/m3 vs.(130.11±140.61) μg/m3;Z=-2.38,P=0.017].The north-south difference in household PM2.5 concentration was more significant in rural areas than in urban areas[(324.19±367.94) μg/m3 vs.(141.20±151.05) μg/m3,χ2=-5.06,P<0.001].The PM2.5 pollution level showed differences between urban and rural households using different fuel types (χ2=92.85,P<0.001),stove types (χ2=74.42,P<0.001),and whether they were heating (Z=-4.43,P<0.001).Specifically,rural households mainly used solid fuels (manure,charcoal,coal) and traditional or improved stoves,while urban households mainly used clean fuels (gas) and clean stoves.The PM2.5 concentrations in heated households were higher than those in non-heated households in both rural and urban areas (Z=-4.43,P<0.001). Conclusions The household PM2.5 pollution caused by fuel combustion in China remains a high level.The PM2.5 concentration shows a significant difference between urban and rural households,and the PM2.5 pollution is more serious in rural households.The difference in the household PM2.5 concentration between urban and rural areas is more significant in northern China.PM2.5 pollution in the households using solid fuel,traditional stoves,and heating is serious,and thus targeted measures should be taken to control PM2.5 pollution in these households.
Humans
;
Particulate Matter/analysis*
;
Air Pollution, Indoor/analysis*
;
Cooking
;
Environmental Exposure/analysis*
;
China
;
Rural Population
9.Research progress on the relationship between air pollution and gestational diabetes.
Xiao Ling ZENG ; Qing CHEN ; Heng YANG ; Jia CAO ; Ni Ya ZHOU
Chinese Journal of Preventive Medicine 2023;57(2):159-165
Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications and has serious implications for the health of mothers and their offspring. In recent years, studies have confirmed that air pollution is one of the main risk factors for diabetes, and there is increasing evidence that air pollution exposure is closely related to the occurrence of gestational diabetes. However, current studies on the association between air pollutant exposure and the incidence of gestational diabetes are inconsistent, and the window period of pollutant exposure is still unclear. Limited mechanistic studies suggest that airborne particulate matter and gaseous pollutants may affect GDM through multiple mechanisms, including inflammation, oxidative stress, disruption of adipokine secretion, and imbalance of intestinal flora. This review summarizes the relationship between air pollutant exposure and the incidence of GDM in recent years, as well as the possible molecular mechanism of the occurrence and development of GDM caused by air pollutants, in order to provide scientific basis for preventing pollutant exposure, reducing the risk of GDM, improving maternal and fetal outcomes and improving the quality of the birth population.
Pregnancy
;
Female
;
Humans
;
Diabetes, Gestational/epidemiology*
;
Air Pollution/analysis*
;
Air Pollutants/analysis*
;
Particulate Matter/analysis*
;
Risk Factors
;
Maternal Exposure/adverse effects*
10.Progress and future perspective of epidemiological research of air pollution and climate change in the context of achieving carbon peaking and carbon neutrality goals.
Cong LIU ; Ren Jie CHEN ; Hai Dong KAN
Chinese Journal of Epidemiology 2023;44(3):353-359
Climate change is the great health challenge for human beings in the 21st century. Air pollution is also an important public health problem worldwide. China announced the climate commitment to achieve carbon peaking by 2030 and carbon neutrality by 2060. Achieving these goals would not only have far-reaching effects on air pollution control and climate change, but also improve the population health in China. Air pollution and climate change epidemiology are important aspects of environmental epidemiology. In this paper, we discuss the current status and future development of epidemiological research of air pollution and climate change in the context of achieving carbon peaking and carbon neutrality goals to provide ideas and suggestions for environmental and health studies in the future.
Humans
;
Climate Change
;
Goals
;
Air Pollution/analysis*
;
Environmental Health
;
Public Health
;
China/epidemiology*
;
Carbon

Result Analysis
Print
Save
E-mail