2.Non-linear association between long-term air pollution exposure and risk of metabolic dysfunction-associated steatotic liver disease.
Wei-Chun CHENG ; Pei-Yi WONG ; Chih-Da WU ; Pin-Nan CHENG ; Pei-Chen LEE ; Chung-Yi LI
Environmental Health and Preventive Medicine 2024;29():7-7
BACKGROUND:
Metabolic Dysfunction-associated Steatotic Liver Disease (MASLD) has become a global epidemic, and air pollution has been identified as a potential risk factor. This study aims to investigate the non-linear relationship between ambient air pollution and MASLD prevalence.
METHOD:
In this cross-sectional study, participants undergoing health checkups were assessed for three-year average air pollution exposure. MASLD diagnosis required hepatic steatosis with at least 1 out of 5 cardiometabolic criteria. A stepwise approach combining data visualization and regression modeling was used to determine the most appropriate link function between each of the six air pollutants and MASLD. A covariate-adjusted six-pollutant model was constructed accordingly.
RESULTS:
A total of 131,592 participants were included, with 40.6% met the criteria of MASLD. "Threshold link function," "interaction link function," and "restricted cubic spline (RCS) link functions" best-fitted associations between MASLD and PM2.5, PM10/CO, and O3 /SO2/NO2, respectively. In the six-pollutant model, significant positive associations were observed when pollutant concentrations were over: 34.64 µg/m3 for PM2.5, 57.93 µg/m3 for PM10, 56 µg/m3 for O3, below 643.6 µg/m3 for CO, and within 33 and 48 µg/m3 for NO2. The six-pollutant model using these best-fitted link functions demonstrated superior model fitting compared to exposure-categorized model or linear link function model assuming proportionality of odds.
CONCLUSION
Non-linear associations were found between air pollutants and MASLD prevalence. PM2.5, PM10, O3, CO, and NO2 exhibited positive associations with MASLD in specific concentration ranges, highlighting the need to consider non-linear relationships in assessing the impact of air pollution on MASLD.
Humans
;
Nitrogen Dioxide
;
Cross-Sectional Studies
;
Air Pollution/analysis*
;
Air Pollutants/analysis*
;
Particulate Matter/analysis*
;
Liver Diseases
;
Environmental Exposure/analysis*
4.Research progress on the relationship between air pollution and gestational diabetes.
Xiao Ling ZENG ; Qing CHEN ; Heng YANG ; Jia CAO ; Ni Ya ZHOU
Chinese Journal of Preventive Medicine 2023;57(2):159-165
Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications and has serious implications for the health of mothers and their offspring. In recent years, studies have confirmed that air pollution is one of the main risk factors for diabetes, and there is increasing evidence that air pollution exposure is closely related to the occurrence of gestational diabetes. However, current studies on the association between air pollutant exposure and the incidence of gestational diabetes are inconsistent, and the window period of pollutant exposure is still unclear. Limited mechanistic studies suggest that airborne particulate matter and gaseous pollutants may affect GDM through multiple mechanisms, including inflammation, oxidative stress, disruption of adipokine secretion, and imbalance of intestinal flora. This review summarizes the relationship between air pollutant exposure and the incidence of GDM in recent years, as well as the possible molecular mechanism of the occurrence and development of GDM caused by air pollutants, in order to provide scientific basis for preventing pollutant exposure, reducing the risk of GDM, improving maternal and fetal outcomes and improving the quality of the birth population.
Pregnancy
;
Female
;
Humans
;
Diabetes, Gestational/epidemiology*
;
Air Pollution/analysis*
;
Air Pollutants/analysis*
;
Particulate Matter/analysis*
;
Risk Factors
;
Maternal Exposure/adverse effects*
5.Ambient Fine Particulate Matter Exposure and Blood Pressure: Evidence from a Large Chinese Multiple Follow-Up Study.
Bahabaike JIANGTULU ; Chang Xin LAN ; Jun Xi CHEN ; Xi CHEN ; Bin WANG ; Tao XUE
Biomedical and Environmental Sciences 2023;36(1):38-49
OBJECTIVE:
This study aimed to investigate the association of ambient PM2.5 exposure with blood pressure (BP) at the population level in China.
METHODS:
A total of 14,080 participants who had at least two valid blood pressure records were selected from the China Health and Retirement Longitudinal Survey during 2011-2015. Their long-term PM2.5 exposure was assessed at the geographical level, on the basis of a regular 0.1° × 0.1° grid over China. A mixed-effects regression model was used to assess associations.
RESULTS:
Each decrease of 10 μg/m3 in the 1 year-mean PM2.5 concentration (FPM1Y) was associated with a decrease of 1.24 [95% confidence interval (CI): 0.84-1.64] mmHg systolic BP (SBP) and 0.50 (95% CI: 0.25-0.75) mmHg diastolic BP (DBP), respectively. A robust association was observed between the long-term decrease in PM2.5 and decreased BP in the middle-aged and older population. Using a generalized additive mixed model, we further found that SBP increased nonlinearly overall with FPM1Y but in an approximately linear range when the FPM1Y concentration was < 70 µg/m3; In contrast, DBP increased approximately linearly without a clear threshold.
CONCLUSION
Efficient control of PM2.5 air pollution may promote vascular health in China. Our study provides robust scientific support for making the related air pollution control policies.
Middle Aged
;
Humans
;
Aged
;
Particulate Matter/analysis*
;
Blood Pressure
;
Air Pollutants/analysis*
;
Follow-Up Studies
;
Hypertension/etiology*
;
East Asian People
;
Environmental Exposure/analysis*
;
Air Pollution/analysis*
;
China/epidemiology*
7.Current status and research progress of occupational health monitoring in welding fume operations.
Da Yu WANG ; Hui Qing ZHANG ; Qiang ZENG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(1):66-71
Welding operations are widely present in the manufacturing production process, involving a large number of occupational groups, and are the key occupations where work injuries and occupational diseases occur in China. For different welding processes and welding materials, the content and focus of occupational health monitoring are different. At present, the item of occupational health examination in welding operation is in poor consistency with the on-site exposure of occupational hazard factors, and it is mainly concentrated in the stage of disease development, which can not reflect the early health damage caused by welding dust exposure in time. The emergence of biomarkers of welding dust can make up for this defect. Therefore, it is of great significance to describe the current situation of occupational health monitoring of welding dust and summarize the research progress of related biomarkers for the early prevention of diseases caused by welding dust and the practice of occupational health monitoring.
Occupational Health
;
Welding
;
Occupational Exposure/analysis*
;
Dust/analysis*
;
Biomarkers
;
Air Pollutants, Occupational/analysis*
8.Quantitative risk assessment of occupational exposure to PCDD/Fs in the waste incineration industry.
Jin Tong HE ; Liang Jiao QU ; Shi Biao SU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(3):213-216
Objective: To analyze the level of PCDD/Fs exposure of occupational workers in the waste incineration industry and explore the risk of occupational exposure. Methods: In September 2021, literature on environmental PCDD/Fs exposure in waste incineration plants published from the establishment of the database to February 10, 2021 was retrieved from CNKI database. A total of 1365 literatures were retrieved, and 7 met the criteria for inclusion. The US Environmental Protection Agency (EPA) inhalation risk model was used to assess and analyze carcinogenic and non-carcinogenic risks of PCDD/Fs exposure among occupational workers in the waste incineration industry. Results: A total of 86 sampling sites were included in incineration plants in 7 regions. The study of Wuhan area showed that the concentration of working environment near the waste incinerator in the same factory was the highest, followed by the rest and office area in the factory. The concentration of PCDD/Fs in waste incinerators was the highest in Southwest China (4880.00-24880.00 pg TEQ/m(3)), and the lowest in Shenzhen (0.02-0.44 pg TEQ/m(3)). According to the cancer risk assessment, with the increase of exposure years, the risk of cancer increased. The highest risk of cancer was found in the waste incineration plants in Southwest China. When the exposure period was 1 year, the risk was moderate (22.40×10(-6)-114.20×10(-6)). When the exposure time was more than 5 years, the risk of cancer was high. In Jinan, workers working near the incinerator had a moderate risk of cancer after five years of exposure. In Zhejiang, workers were at medium risk of cancer after exposure for more than 20 years. Workers in Wuhan, Shanghai, Zhejiang Province, Shenzhen and the Pearl River Delta were still at low risk of cancer after 40 years of occupational exposure. HQ>1 of workers working near the waste incinerators in Jinan, Zhejiang Province and Southwest China, and the qualitative evaluation results showed that the non-carcinogenic risk was unacceptable. Conclusion: There are great differences in PCDD/Fs of occupational exposure in waste incineration industry, and the occupational exposure exceeding the occupational exposure limit has higher carcinogenic and non carcinogenic risks.
Humans
;
Dibenzofurans
;
Polychlorinated Dibenzodioxins/analysis*
;
Air Pollutants/analysis*
;
Incineration
;
Dibenzofurans, Polychlorinated/analysis*
;
China/epidemiology*
;
Benzofurans
;
Occupational Exposure/analysis*
;
Carcinogens
;
Risk Assessment
;
Neoplasms
;
Environmental Monitoring/methods*
9.Joint effects of meteorological factors and PM2.5 on age-related macular degeneration: a national cross-sectional study in China.
Jiayu HE ; Yuanyuan LIU ; Ai ZHANG ; Qianfeng LIU ; Xueli YANG ; Naixiu SUN ; Baoqun YAO ; Fengchao LIANG ; Xiaochang YAN ; Yang LIU ; Hongjun MAO ; Xi CHEN ; Nai-Jun TANG ; Hua YAN
Environmental Health and Preventive Medicine 2023;28():3-3
BACKGROUND:
Weather conditions are a possible contributing factor to age-related macular degeneration (AMD), a leading cause of irreversible loss of vision. The present study evaluated the joint effects of meteorological factors and fine particulate matter (PM2.5) on AMD.
METHODS:
Data was extracted from a national cross-sectional survey conducted across 10 provinces in rural China. A total of 36,081 participants aged 40 and older were recruited. AMD was diagnosed clinically by slit-lamp ophthalmoscopy, fundus photography, and spectral domain optical coherence tomography (OCT). Meteorological data were calculated by European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis and were matched to participants' home addresses by latitude and longitude. Participants' individual PM2.5 exposure concentrations were calculated by a satellite-based model at a 1-km resolution level. Multivariable-adjusted logistic regression models paired with interaction analysis were performed to investigate the joint effects of meteorological factors and PM2.5 on AMD.
RESULTS:
The prevalence of AMD in the study population was 2.6% (95% CI 2.42-2.76%). The average annual PM2.5 level during the study period was 63.1 ± 15.3 µg/m3. A significant positive association was detected between AMD and PM2.5 level, temperature (T), and relative humidity (RH), in both the independent and the combined effect models. For PM2.5, compared with the lowest quartile, the odds ratios (ORs) with 95% confidence intervals (CIs) across increasing quartiles were 0.828 (0.674,1.018), 1.105 (0.799,1.528), and 2.602 (1.516,4.468). Positive associations were observed between AMD and temperature, with ORs (95% CI) of 1.625 (1.059,2.494), 1.619 (1.026,2.553), and 3.276 (1.841,5.830), across increasing quartiles. In the interaction analysis, the estimated relative excess risk due to interaction (RERI) and the attributable proportion (AP) for combined atmospheric pressure and PM2.5 was 0.864 (0.586,1.141) and 1.180 (0.768,1.592), respectively, indicating a synergistic effect between PM2.5 and atmospheric pressure.
CONCLUSIONS
This study is among the first to characterize the coordinated effects of meteorological factors and PM2.5 on AMD. The findings warrant further investigation to elucidate the relationship between ambient environment and AMD.
Humans
;
Adult
;
Middle Aged
;
Cross-Sectional Studies
;
Air Pollutants/analysis*
;
Particulate Matter/analysis*
;
China/epidemiology*
;
Macular Degeneration/etiology*
;
Meteorological Concepts
10.Early prenatal exposure to air pollutants and congenital heart disease: a nested case-control study.
Zhao MA ; Weiqin LI ; Jicui YANG ; Yijuan QIAO ; Xue CAO ; Han GE ; Yue WANG ; Hongyan LIU ; Naijun TANG ; Xueli YANG ; Junhong LENG
Environmental Health and Preventive Medicine 2023;28():4-4
BACKGROUND:
Congenital heart disease (CHD) is one of the most common congenital malformations in humans. Inconsistent results emerged in the existed studies on associations between air pollution and congenital heart disease. The purpose of this study was to evaluate the association of gestational exposure to air pollutants with congenital heart disease, and to explore the critical exposure windows for congenital heart disease.
METHODS:
The nested case-control study collected birth records and the following health data in Tianjin Women and Children's Health Center, China. All of the cases of congenital heart disease from 2013 to 2015 were selected matching five healthy controls for each case. Inverse distance weighting was used to estimate individual exposure based on daily air pollution data. Furthermore, the conditional logistic regression with distributed lag non-linear model was performed to identify the association between gestational exposure to air pollution and congenital heart disease.
RESULTS:
A total of 8,748 mother-infant pairs were entered into the analysis, of which 1,458 infants suffered from congenital heart disease. For each 10 µg/m3 increase of gestational exposure to PM2.5, the ORs (95% confidence interval, 95%CI) ranged from 1.008 (1.001-1.016) to 1.013 (1.001-1.024) during the 1st-2nd gestation weeks. Similar weak but increased risks of congenital heart disease were associated with O3 exposure during the 1st week and SO2 exposure during 6th-7th weeks in the first trimester, while no significant findings for other air pollutants.
CONCLUSIONS
This study highlighted that gestational exposure to PM2.5, O3, and SO2 had lag effects on congenital heart disease. Our results support potential benefits for pregnancy women to the mitigation of air pollution exposure in the early stage, especially when a critical exposure time window of air pollutants may precede heart development.
Infant
;
Pregnancy
;
Child
;
Humans
;
Female
;
Air Pollutants/analysis*
;
Case-Control Studies
;
Prenatal Exposure Delayed Effects/epidemiology*
;
Heart Defects, Congenital/etiology*
;
China/epidemiology*
;
Particulate Matter/adverse effects*
;
Maternal Exposure/adverse effects*

Result Analysis
Print
Save
E-mail