1.Standardized operational protocol for the China Human Brain Bank Consortium(2nd edition)
Xue WANG ; Zhen CHEN ; Juan-Li WU ; Nai-Li WANG ; Di ZHANG ; Juan DU ; Liang YU ; Wan-Ru DUAN ; Peng-Hao LIU ; Han-Lin ZHANG ; Can HUANG ; Yue-Shan PIAO ; Ke-Qing ZHU ; Ai-Min BAO ; Jing ZHANG ; Yi SHEN ; Chao MA ; Wen-Ying QIU ; Xiao-Jing QIAN
Acta Anatomica Sinica 2024;55(6):734-745
		                        		
		                        			
		                        			Human brain banks use a standardized protocol to collect,process and store post-mortem human brains and related tissues,along with relevant clinical information,and to provide the tissue samples and data as a resource to foster neuroscience research according to a standardized operating protocols(SOP).Human brain bank serves as the foundation for neuroscience research and the diagnosis of neurological disorders,highlighting the crucial rule of ensuring the consistency of standardized quality for brain tissue samples.The first version of SOP in 2017 was published by the China Human Brain Bank Consortium.As members increases from different regions in China,a revised SOP was drafted by experts from the China Human Brain Bank Consortium to meet the growing demands for neuroscience research.The revised SOP places a strong emphasis on ethical standards,incorporates neuropathological evaluation of brain regions,and provides clarity on spinal cord sampling and pathological assessment.Notable enhancements in this updated version of the SOP include reinforced ethical guidelines,inclusion of matching controls in recruitment,and expansion of brain regions to be sampled for neuropathological evaluation.
		                        		
		                        		
		                        		
		                        	
2.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
		                        		
		                        			
		                        			Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
		                        		
		                        		
		                        		
		                        	
3.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
		                        		
		                        			
		                        			Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
		                        		
		                        		
		                        		
		                        	
4.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
		                        		
		                        			
		                        			Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
		                        		
		                        		
		                        		
		                        	
5.Changing distribution and resistance profiles of Klebsiella strains in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Chuyue ZHUO ; Yingyi GUO ; Chao ZHUO ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):418-426
		                        		
		                        			
		                        			Objective To understand the changing distribution and antimicrobial resistance profiles of Klebsiella strains in 52 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Methods Antimicrobial susceptibility testing was carried out according to the unified CHINET protocol.The susceptibility results were interpreted according to the breakpoints in the Clinical & Laboratory Standards Institute(CLSI)M100 document.Results A total of 241,549 nonduplicate Klebsiella strains were isolated from 2015 to 2021,including Klebsiella pneumoniae(88.0%),Klebsiella aerogenes(5.8%),Klebsiella oxytoca(5.7%),and other Klebsiella species(0.6%).Klebsiella strains were mainly isolated from respiratory tract(48.49±5.32)%.Internal medicine(22.79±3.28)%,surgery(17.98±3.10)%,and ICU(14.03±1.39)%were the top 3 departments where Klebsiella strains were most frequently isolated.K.pneumoniae isolates showed higher resistance rate to most antimicrobial agents compared to other Klebsiella species.Klebsiella isolates maintained low resistance rates to tigecycline and polymyxin B.ESBLs-producing K.pneumoniae and K.oxytoca strains showed higher resistance rates to all the antimicrobial agents tested compared to the corresponding ESBLs-nonproducing strains.The K.pneumoniae and carbapenem-resistant K.pneumoniae(CRKP)strains isolated from ICU patients demonstrated higher resistance rates to majority of the antimicrobial agents tested than the strains isolated from non-ICU patients.The CRKP strains isolated from adult patients had higher resistance rates to most of the antimicrobial agents tested than the corresponding CRKP strains isolated from paediatric patients.Conclusions The prevalence of carbapenem-resistant strains in Klebsiella isolates increased greatly from 2015 to 2021.However,the Klebsiella isolates remained highly susceptible to tigecycline and polymyxin B.Antimicrobial resistance surveillance should still be strengthened for Klebsiella strains.
		                        		
		                        		
		                        		
		                        	
6.Changing resistance profiles of Staphylococcus isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yuling XIAO ; Mei KANG ; Yi XIE ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(5):570-580
		                        		
		                        			
		                        			Objective To investigate the changing distribution and antibiotic resistance profiles of clinical isolates of Staphylococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Staphylococcus according to the unified protocol of CHINET(China Antimicrobial Surveillance Network)using disk diffusion method and commercial automated systems.The CHINET antimicrobial resistance surveillance data from 2015 to 2021 were interpreted according to the 2021 CLSI breakpoints and analyzed using WHONET 5.6.Results During the period from 2015 to 2021,a total of 204,771 nonduplicate strains of Staphylococcus were isolated,including 136,731(66.8%)strains of Staphylococcus aureus and 68,040(33.2%)strains of coagulase-negative Staphylococcus(CNS).The proportions of S.aureus isolates and CNS isolates did not show significant change.S.aureus strains were mainly isolated from respiratory specimens(38.9±5.1)%,wound,pus and secretions(33.6±4.2)%,and blood(11.9±1.5)%.The CNS strains were predominantly isolated from blood(73.6±4.2)%,cerebrospinal fluid(12.1±2.5)%,and pleural effusion and ascites(8.4±2.1)%.S.aureus strains were mainly isolated from the patients in ICU(17.0±7.3)%,outpatient and emergency(11.6±1.7)%,and department of surgery(11.2±0.9)%,whereas CNS strains were primarily isolated from the patients in ICU(32.2±9.7)%,outpatient and emergency(12.8±4.7)%,and department of internal medicine(11.2±1.9)%.The prevalence of methicillin-resistant strains was 32.9%in S.aureus(MRSA)and 74.1%in CNS(MRCNS).Over the 7-year period,the prevalence of MRSA decreased from 42.1%to 29.2%,and the prevalence of MRCNS decreased from 82.1%to 68.2%.MRSA showed higher resistance rates to all the antimicrobial agents tested except trimethoprim-sulfamethoxazole than methicillin-susceptible S.aureus(MSSA).Over the 7-year period,MRSA strains showed decreasing resistance rates to gentamicin,rifampicin,and levofloxacin,MRCNS showed decreasing resistance rates to gentamicin,erythromycin,rifampicin,and trimethoprim-sulfamethoxazole,but increasing resistance rate to levofloxacin.No vancomycin-resistant strains were detected.The prevalence of linezolid-resistant MRCNS increased from 0.2%to 2.3%over the 7-year period.Conclusions Staphylococcus remains the major pathogen among gram-positive bacteria.MRSA and MRCNS were still the principal antibiotic-resistant gram-positive bacteria.No S.aureus isolates were found resistant to vancomycin or linezolid,but linezolid-resistant strains have been detected in MRCNS isolates,which is an issue of concern.
		                        		
		                        		
		                        		
		                        	
7.A multi-center epidemiological study on pneumococcal meningitis in children from 2019 to 2020
Cai-Yun WANG ; Hong-Mei XU ; Gang LIU ; Jing LIU ; Hui YU ; Bi-Quan CHEN ; Guo ZHENG ; Min SHU ; Li-Jun DU ; Zhi-Wei XU ; Li-Su HUANG ; Hai-Bo LI ; Dong WANG ; Song-Ting BAI ; Qing-Wen SHAN ; Chun-Hui ZHU ; Jian-Mei TIAN ; Jian-Hua HAO ; Ai-Wei LIN ; Dao-Jiong LIN ; Jin-Zhun WU ; Xin-Hua ZHANG ; Qing CAO ; Zhong-Bin TAO ; Yuan CHEN ; Guo-Long ZHU ; Ping XUE ; Zheng-Zhen TANG ; Xue-Wen SU ; Zheng-Hai QU ; Shi-Yong ZHAO ; Lin PANG ; Hui-Ling DENG ; Sai-Nan SHU ; Ying-Hu CHEN
Chinese Journal of Contemporary Pediatrics 2024;26(2):131-138
		                        		
		                        			
		                        			Objective To investigate the clinical characteristics and prognosis of pneumococcal meningitis(PM),and drug sensitivity of Streptococcus pneumoniae(SP)isolates in Chinese children.Methods A retrospective analysis was conducted on clinical information,laboratory data,and microbiological data of 160 hospitalized children under 15 years old with PM from January 2019 to December 2020 in 33 tertiary hospitals across the country.Results Among the 160 children with PM,there were 103 males and 57 females.The age ranged from 15 days to 15 years,with 109 cases(68.1% )aged 3 months to under 3 years.SP strains were isolated from 95 cases(59.4% )in cerebrospinal fluid cultures and from 57 cases(35.6% )in blood cultures.The positive rates of SP detection by cerebrospinal fluid metagenomic next-generation sequencing and cerebrospinal fluid SP antigen testing were 40% (35/87)and 27% (21/78),respectively.Fifty-five cases(34.4% )had one or more risk factors for purulent meningitis,113 cases(70.6% )had one or more extra-cranial infectious foci,and 18 cases(11.3% )had underlying diseases.The most common clinical symptoms were fever(147 cases,91.9% ),followed by lethargy(98 cases,61.3% )and vomiting(61 cases,38.1% ).Sixty-nine cases(43.1% )experienced intracranial complications during hospitalization,with subdural effusion and/or empyema being the most common complication[43 cases(26.9% )],followed by hydrocephalus in 24 cases(15.0% ),brain abscess in 23 cases(14.4% ),and cerebral hemorrhage in 8 cases(5.0% ).Subdural effusion and/or empyema and hydrocephalus mainly occurred in children under 1 year old,with rates of 91% (39/43)and 83% (20/24),respectively.SP strains exhibited complete sensitivity to vancomycin(100% ,75/75),linezolid(100% ,56/56),and meropenem(100% ,6/6).High sensitivity rates were also observed for levofloxacin(81% ,22/27),moxifloxacin(82% ,14/17),rifampicin(96% ,25/26),and chloramphenicol(91% ,21/23).However,low sensitivity rates were found for penicillin(16% ,11/68)and clindamycin(6% ,1/17),and SP strains were completely resistant to erythromycin(100% ,31/31).The rates of discharge with cure and improvement were 22.5% (36/160)and 66.2% (106/160),respectively,while 18 cases(11.3% )had adverse outcomes.Conclusions Pediatric PM is more common in children aged 3 months to under 3 years.Intracranial complications are more frequently observed in children under 1 year old.Fever is the most common clinical manifestation of PM,and subdural effusion/emphysema and hydrocephalus are the most frequent complications.Non-culture detection methods for cerebrospinal fluid can improve pathogen detection rates.Adverse outcomes can be noted in more than 10% of PM cases.SP strains are high sensitivity to vancomycin,linezolid,meropenem,levofloxacin,moxifloxacin,rifampicin,and chloramphenicol.[Chinese Journal of Contemporary Pediatrics,2024,26(2):131-138]
		                        		
		                        		
		                        		
		                        	
8.Bioequivalence study of rasagiline mesylate tablets in Chinese healthy subjects
Gang CHEN ; Xiao-Lin WANG ; Si-Qi ZANG ; Ze-Juan WANG ; Xiao-Na LIU ; Ai-Hua DU ; Min LI ; Ya-Nan ZHANG ; Dan ZHANG ; Li-Na ZHANG ; Jin WANG
The Chinese Journal of Clinical Pharmacology 2024;40(19):2885-2890
		                        		
		                        			
		                        			Objective To study the pharmacokinetics and bioequivalence of two formulations of rasagiline mesylate tablets in healthy subjects under fasting and fed conditions.Methods The two-period,two-sequence,crossover study design was adopted in the fasting study.Thirty-six subjects were enrolled and given either test preparation or reference preparation 1 mg respectively in two periods.After collecting plasma samples,the plasma concentration of rasagiline was determined by liquid chromatography-tandem mass spectrometry(LC-MS/MS)and the bioequivalence was evaluated using the average bioequivalence(ABE)method.The four-period,two-sequence,fully replicate crossover study design was adopted in the fed study.Forty-eight subjects were enrolled and given the test preparation or the reference preparation at a dose of 1 mg twice respectively in four periods.According to the degree of intra-individual variation of Cmax,AUC0-t and AUC0-∞,the equivalence was evaluated using the reference-scaled average bioequivalence and ABE method,respectively.Results In the fasting study,the pharmacokinetic parameters of rasagiline of the test and reference preparation were as follow:Cmax were(9.70±3.14)and(9.62±3.85)ng·mL-1,AUC0-t were(6.03±1.47)and(6.02±1.95)ng·h·mL-1,AUC0-∞ were(6.13±1.51)and(6.12±1.97)ng·h·mL-1.The 90%confidence interval(CI)of the geometric mean ratio(GMR)were 94.11%-118.06%,99.22%-107.74%and 99.16%-107.44%for Cmax,AUC0-t and AUC0-∞,respectively,which were within the acceptance criteria of 80.00%-125.00%.In the fed study,the pharmacokinetic parameters of rasagiline of the test and reference preparation were as follow:Cmax were(3.00±1.92)and(3.52±1.77)ng·mL-1,AUC0_t were(5.02±1.20)and(5.06±1.20)ng·h·mL-1,AUC0-∞ were(5.11±1.23)and(5.14±1.22)ng·h·mL-1.The 90%CI of GMR were 96.99%-101.19%and 97.17%-101.41%for AUC0-t and AUC0-∞,which were within the acceptance criteria of 80.00%-125.00%.The 95%upper confidence bound of Cmax for were less than"0",and the point estimate of GMR were within the acceptance criteria of 80.00%-125.00%.The incidence of adverse events in fasting and fed studies was 22.86%and 22.92%,respectively,and all adverse events were moderate to mild.Conclusion The two rasagiline mesylate tablets were bioequivalent,and both the formulations were well tolerated.
		                        		
		                        		
		                        		
		                        	
9.3D Microfluidic System for Evaluating Inhibitory Effect of Chinese Herbal Medicine Oldenlandia diffusa on Human Malignant Glioma Invasion Combined with Network Pharmacology Analysis.
Chun-Hui HAN ; Jing-Yun MA ; Wei ZOU ; Jia-Lin QU ; Yang DU ; Na LI ; Yong LIU ; Guo JIN ; Ai-Jing LENG ; Jing LIU
Chinese journal of integrative medicine 2023;29(1):52-60
		                        		
		                        			OBJECTIVE:
		                        			To investigate the anti-invasion efficacy of the ethanol extract of Oldenlandia diffusa Will. (EEOD) on a three-dimensional (3D) human malignant glioma (MG) cell invasion and perfusion model based on microfluidic chip culture and the possible mechanism of action of Oldenlandia diffusa Will. (OD).
		                        		
		                        			METHODS:
		                        			The comprehensive pharmacodynamic analysis method in this study was based on microfluidic chip 3D cell perfusion culture technology, and the action mechanism of Chinese medicine (CM) on human MG cells was investigated through network pharmacology analysis. First, the components of EEOD were analyzed by ultraperformance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Then, cell viability and apoptosis were assessed to determine the optimum concentration of EEOD for invasion experiments, and two-dimensional (2D) migration and invasion abilities of U87 and U251 MG cells were evaluated using scratch wound and Transwell assays. The possible mechanism underlying the effects of EEOD on glioma was analyzed through a network pharmacology approach.
		                        		
		                        			RESULTS:
		                        			Thirty-five compounds of EEOD were detected by UPLC-Q-TOF/MS. EEOD suppressed the viability of MG cells, promoted their apoptosis, and inhibited their migratory and invasive potentials (all P<0.05). Network pharmacology analysis showed that OD inhibited the invasion of MG cells by directly regulating MAPK and Wnt pathways through MAPK, EGFR, MYC, GSK3B, and other targets. The anti-invasion effect of OD was also found to be related to the indirect regulation of microtubule cytoskeleton organization.
		                        		
		                        			CONCLUSIONS
		                        			]EEOD could inhibit the invasion of human MG cells, and the anti-invasion mechanism of OD might be regulating MAPK and Wnt signaling pathways and microtubule cytoskeleton organization.
		                        		
		                        		
		                        		
		                        	
10.A multicenter epidemiological study of acute bacterial meningitis in children.
Cai Yun WANG ; Hong Mei XU ; Jiao TIAN ; Si Qi HONG ; Gang LIU ; Si Xuan WANG ; Feng GAO ; Jing LIU ; Fu Rong LIU ; Hui YU ; Xia WU ; Bi Quan CHEN ; Fang Fang SHEN ; Guo ZHENG ; Jie YU ; Min SHU ; Lu LIU ; Li Jun DU ; Pei LI ; Zhi Wei XU ; Meng Quan ZHU ; Li Su HUANG ; He Yu HUANG ; Hai Bo LI ; Yuan Yuan HUANG ; Dong WANG ; Fang WU ; Song Ting BAI ; Jing Jing TANG ; Qing Wen SHAN ; Lian Cheng LAN ; Chun Hui ZHU ; Yan XIONG ; Jian Mei TIAN ; Jia Hui WU ; Jian Hua HAO ; Hui Ya ZHAO ; Ai Wei LIN ; Shuang Shuang SONG ; Dao Jiong LIN ; Qiong Hua ZHOU ; Yu Ping GUO ; Jin Zhun WU ; Xiao Qing YANG ; Xin Hua ZHANG ; Ying GUO ; Qing CAO ; Li Juan LUO ; Zhong Bin TAO ; Wen Kai YANG ; Yong Kang ZHOU ; Yuan CHEN ; Li Jie FENG ; Guo Long ZHU ; Yan Hong ZHANG ; Ping XUE ; Xiao Qin LI ; Zheng Zhen TANG ; De Hui ZHANG ; Xue Wen SU ; Zheng Hai QU ; Ying ZHANG ; Shi Yong ZHAO ; Zheng Hong QI ; Lin PANG ; Cai Ying WANG ; Hui Ling DENG ; Xing Lou LIU ; Ying Hu CHEN ; Sainan SHU
Chinese Journal of Pediatrics 2022;60(10):1045-1053
		                        		
		                        			
		                        			Objective: To analyze the clinical epidemiological characteristics including composition of pathogens , clinical characteristics, and disease prognosis acute bacterial meningitis (ABM) in Chinese children. Methods: A retrospective analysis was performed on the clinical and laboratory data of 1 610 children <15 years of age with ABM in 33 tertiary hospitals in China from January 2019 to December 2020. Patients were divided into different groups according to age,<28 days group, 28 days to <3 months group, 3 months to <1 year group, 1-<5 years of age group, 5-<15 years of age group; etiology confirmed group and clinically diagnosed group according to etiology diagnosis. Non-numeric variables were analyzed with the Chi-square test or Fisher's exact test, while non-normal distrituction numeric variables were compared with nonparametric test. Results: Among 1 610 children with ABM, 955 were male and 650 were female (5 cases were not provided with gender information), and the age of onset was 1.5 (0.5, 5.5) months. There were 588 cases age from <28 days, 462 cases age from 28 days to <3 months, 302 cases age from 3 months to <1 year of age group, 156 cases in the 1-<5 years of age and 101 cases in the 5-<15 years of age. The detection rates were 38.8% (95/245) and 31.5% (70/222) of Escherichia coli and 27.8% (68/245) and 35.1% (78/222) of Streptococcus agalactiae in infants younger than 28 days of age and 28 days to 3 months of age; the detection rates of Streptococcus pneumonia, Escherichia coli, and Streptococcus agalactiae were 34.3% (61/178), 14.0% (25/178) and 13.5% (24/178) in the 3 months of age to <1 year of age group; the dominant pathogens were Streptococcus pneumoniae and the detection rate were 67.9% (74/109) and 44.4% (16/36) in the 1-<5 years of age and 5-<15 years of age . There were 9.7% (19/195) strains of Escherichia coli producing ultra-broad-spectrum β-lactamases. The positive rates of cerebrospinal fluid (CSF) culture and blood culture were 32.2% (515/1 598) and 25.0% (400/1 598), while 38.2% (126/330)and 25.3% (21/83) in CSF metagenomics next generation sequencing and Streptococcus pneumoniae antigen detection. There were 4.3% (32/790) cases of which CSF white blood cell counts were normal in etiology confirmed group. Among 1 610 children with ABM, main intracranial imaging complications were subdural effusion and (or) empyema in 349 cases (21.7%), hydrocephalus in 233 cases (14.5%), brain abscess in 178 cases (11.1%), and other cerebrovascular diseases, including encephalomalacia, cerebral infarction, and encephalatrophy, in 174 cases (10.8%). Among the 166 cases (10.3%) with unfavorable outcome, 32 cases (2.0%) died among whom 24 cases died before 1 year of age, and 37 cases (2.3%) had recurrence among whom 25 cases had recurrence within 3 weeks. The incidences of subdural effusion and (or) empyema, brain abscess and ependymitis in the etiology confirmed group were significantly higher than those in the clinically diagnosed group (26.2% (207/790) vs. 17.3% (142/820), 13.0% (103/790) vs. 9.1% (75/820), 4.6% (36/790) vs. 2.7% (22/820), χ2=18.71, 6.20, 4.07, all P<0.05), but there was no significant difference in the unfavorable outcomes, mortility, and recurrence between these 2 groups (all P>0.05). Conclusions: The onset age of ABM in children is usually within 1 year of age, especially <3 months. The common pathogens in infants <3 months of age are Escherichia coli and Streptococcus agalactiae, and the dominant pathogen in infant ≥3 months is Streptococcus pneumoniae. Subdural effusion and (or) empyema and hydrocephalus are common complications. ABM should not be excluded even if CSF white blood cell counts is within normal range. Standardized bacteriological examination should be paid more attention to increase the pathogenic detection rate. Non-culture CSF detection methods may facilitate the pathogenic diagnosis.
		                        		
		                        		
		                        		
		                        			Adolescent
		                        			;
		                        		
		                        			Brain Abscess
		                        			;
		                        		
		                        			Child
		                        			;
		                        		
		                        			Child, Preschool
		                        			;
		                        		
		                        			Escherichia coli
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Hydrocephalus
		                        			;
		                        		
		                        			Infant
		                        			;
		                        		
		                        			Infant, Newborn
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Meningitis, Bacterial/epidemiology*
		                        			;
		                        		
		                        			Retrospective Studies
		                        			;
		                        		
		                        			Streptococcus agalactiae
		                        			;
		                        		
		                        			Streptococcus pneumoniae
		                        			;
		                        		
		                        			Subdural Effusion
		                        			;
		                        		
		                        			beta-Lactamases
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail