1.Unveiling the molecular and cellular links between obstructive sleep apnea-hypopnea syndrome and vascular aging.
Wei LIU ; Le ZHANG ; Wenhui LIAO ; Huiguo LIU ; Wukaiyang LIANG ; Jinhua YAN ; Yi HUANG ; Tao JIANG ; Qian WANG ; Cuntai ZHANG
Chinese Medical Journal 2025;138(2):155-171
Vascular aging (VA) is a common etiology of various chronic diseases and represents a major public health concern. Intermittent hypoxia (IH) associated with obstructive sleep apnea-hypopnea syndrome (OSAHS) is a primary pathological and physiological driver of OSAHS-induced systemic complications. A substantial proportion of OSAHS patients, estimated to be between 40% and 80%, have comorbidities such as hypertension, heart failure, coronary artery disease, pulmonary hypertension, atrial fibrillation, aneurysm, and stroke, all of which are closely associated with VA. This review examines the molecular and cellular features common to both OSAHS and VA, highlighting decreased melatonin secretion, impaired autophagy, increased apoptosis, increased inflammation and pyroptosis, increased oxidative stress, accelerated telomere shortening, accelerated stem cell depletion, metabolic disorders, imbalanced protein homeostasis, epigenetic alterations, and dysregulated neurohormonal signaling. The accumulation and combination of these features may underlie the pathophysiological link between OSAHS and VA, but the exact mechanisms by which OSAHS affects VA may require further investigation. Taken together, these findings suggest that OSAHS may serve as a novel risk factor for VA and related vascular disorders, and that targeting these features may offer therapeutic potential to mitigate the vascular risks associated with OSAHS.
Humans
;
Sleep Apnea, Obstructive/pathology*
;
Aging/physiology*
;
Oxidative Stress/physiology*
;
Animals
2.Autophagy in Oligodendrocyte Lineage Cells Controls Oligodendrocyte Numbers and Myelin Integrity in an Age-dependent Manner.
Hong CHEN ; Gang YANG ; De-En XU ; Yu-Tong DU ; Chao ZHU ; Hua HU ; Li LUO ; Lei FENG ; Wenhui HUANG ; Yan-Yun SUN ; Quan-Hong MA
Neuroscience Bulletin 2025;41(3):374-390
Oligodendrocyte lineage cells, including oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs), are essential in establishing and maintaining brain circuits. Autophagy is a conserved process that keeps the quality of organelles and proteostasis. The role of autophagy in oligodendrocyte lineage cells remains unclear. The present study shows that autophagy is required to maintain the number of OPCs/OLs and myelin integrity during brain aging. Inactivation of autophagy in oligodendrocyte lineage cells increases the number of OPCs/OLs in the developing brain while exaggerating the loss of OPCs/OLs with brain aging. Inactivation of autophagy in oligodendrocyte lineage cells impairs the turnover of myelin basic protein (MBP). It causes MBP to accumulate in the cytoplasm as multimeric aggregates and fails to be incorporated into integral myelin, which is associated with attenuated endocytic recycling. Inactivation of autophagy in oligodendrocyte lineage cells impairs myelin integrity and causes demyelination. Thus, this study shows autophagy is required to maintain myelin quality during aging by controlling the turnover of myelin components.
Animals
;
Autophagy/physiology*
;
Oligodendroglia/metabolism*
;
Myelin Sheath/physiology*
;
Aging/pathology*
;
Myelin Basic Protein/metabolism*
;
Cell Lineage/physiology*
;
Mice
;
Oligodendrocyte Precursor Cells
;
Mice, Inbred C57BL
;
Brain/cytology*
;
Cells, Cultured
;
Cell Count
3.Cellular senescence in age-related musculoskeletal diseases.
Jinming XIONG ; Qiaoyue GUO ; Xianghang LUO
Frontiers of Medicine 2025;19(3):409-426
Aging is typically associated with decreased musculoskeletal function, leading to reduced mobility and increased frailty. As a hallmark of aging, cellular senescence plays a crucial role in various age-related musculoskeletal diseases, including osteoporosis, osteoarthritis, intervertebral disc degeneration, and sarcopenia. The detrimental effects of senescence are primarily due to impaired regenerative capacity of stem cells and the pro-inflammatory environment created by accumulated senescent cells. The secreted senescence-associated secretory phenotype (SASP) can induce senescence in neighboring cells, further amplifying senescent signals. Although the removal of senescent cells and the suppression of SASP factors have shown promise in alleviating disease progression and restoring musculoskeletal health in mouse models, clinical trials have yet to demonstrate significant efficacy. This review summarizes the mechanisms of cellular senescence in age-related musculoskeletal diseases and discusses potential therapeutic strategies targeting cellular senescence.
Humans
;
Cellular Senescence/physiology*
;
Musculoskeletal Diseases/pathology*
;
Aging/pathology*
;
Animals
;
Senescence-Associated Secretory Phenotype/physiology*
;
Sarcopenia
;
Osteoporosis
4.Aging and metabolic dysfunction-associated steatotic liver disease: a bidirectional relationship.
Frontiers of Medicine 2025;19(3):427-438
In recent years, aging and cellular senescence have triggered an increased interest in corresponding research fields. Evidence shows that the complex aging process is involved in the development of many chronic liver diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). In fact, aging has a tremendous effect on the liver, leading to a gradual decline in the metabolism, detoxification and immune functions of the liver, which in turn increases the risk of liver disease. These changes can be based on the aging of liver cells (hepatocytes, liver sinusoidal endothelial cells, hepatic stellate cells, and Kupffer cells). Similarly, patients with liver diseases exhibit increases in the aging phenotype and aging cells, often manifesting as faster physical functional decline, which is closely related to the promoting effect of liver disease on aging. This review summarizes the interplay between MASLD/MASH development and aging, aiming to reveal the complex relationships that exacerbate one another. Moreover, the corresponding schemes for delaying aging or treating diseases are discussed to provide a basis for the development of effective prevention and treatment strategies in the future.
Humans
;
Aging/physiology*
;
Fatty Liver/metabolism*
;
Liver/pathology*
;
Cellular Senescence
;
Animals
5.Alterations of Audiovisual Integration in Alzheimer's Disease.
Yufei LIU ; Zhibin WANG ; Tao WEI ; Shaojiong ZHOU ; Yunsi YIN ; Yingxin MI ; Xiaoduo LIU ; Yi TANG
Neuroscience Bulletin 2023;39(12):1859-1872
Audiovisual integration is a vital information process involved in cognition and is closely correlated with aging and Alzheimer's disease (AD). In this review, we evaluated the altered audiovisual integrative behavioral symptoms in AD. We further analyzed the relationships between AD pathologies and audiovisual integration alterations bidirectionally and suggested the possible mechanisms of audiovisual integration alterations underlying AD, including the imbalance between energy demand and supply, activity-dependent degeneration, disrupted brain networks, and cognitive resource overloading. Then, based on the clinical characteristics including electrophysiological and imaging data related to audiovisual integration, we emphasized the value of audiovisual integration alterations as potential biomarkers for the early diagnosis and progression of AD. We also highlighted that treatments targeted audiovisual integration contributed to widespread pathological improvements in AD animal models and cognitive improvements in AD patients. Moreover, investigation into audiovisual integration alterations in AD also provided new insights and comprehension about sensory information processes.
Animals
;
Humans
;
Alzheimer Disease/pathology*
;
Brain/pathology*
;
Aging/physiology*
;
Cognition
6.Quantitative assessment of the aging corpus cavernosum by shear wave elastography.
Hao CHENG ; Guo-Xiong LIU ; Fei WANG ; Ke WANG ; Li-Tao RUAN ; Lin YANG
Asian Journal of Andrology 2022;24(6):628-632
We wanted to determine whether shear wave elastography (SWE) could be used to evaluate the aging degree of the corpus cavernosum (CC) and to identify the histological basis of changes in SWE measurements during the aging process. We performed a cross-sectional study enrolling healthy participants of different ages. We measured the Young's modulus (YM) of the penile CCs by SWE and assessed erectile function using the International Index of Erectile Function-5 (IIEF-5). Histological investigation was performed in surgically resected penile specimens from a separate group of patients to examine the smooth muscle and collagen content of the CCs. Furthermore, we measured the YM, erectile function, smooth muscle, and collagen content of the CCs in different age groups of rats. Finally, we enrolled 210 male volunteers in this study. The YM of the CC (CCYM) was positively correlated with age (r = 0.949, P < 0.01) and negatively correlated with erectile function (r = -0.843, P < 0.01). Histological examinations showed that CCs had increased collagen content but decreased smooth muscle content with increased age. The same positive correlation between CCYM and age was also observed in the animal study. In addition, the animal study showed that older rats, with increased CCYM and decreased erectile function, had lower smooth muscle content and higher collagen content. SWE can noninvasively and quantitatively evaluate the aging degree of the CC. Increased collagen content and decreased smooth muscle content might be the histological basis for the effect of aging on the CC and the increase in its YM.
Humans
;
Male
;
Rats
;
Animals
;
Erectile Dysfunction
;
Elasticity Imaging Techniques
;
Cross-Sectional Studies
;
Penis/pathology*
;
Penile Erection/physiology*
;
Aging
;
Collagen
7.Brain Banking for Research into Neurodegenerative Disorders and Ageing.
Claire E SHEPHERD ; Holly ALVENDIA ; Glenda M HALLIDAY
Neuroscience Bulletin 2019;35(2):283-288
Advances in cellular and molecular biology underpin most current therapeutic advances in medicine. Such advances for neurological and neurodegenerative diseases are hindered by the lack of similar specimens. It is becoming increasingly evident that greater access to human brain tissue is necessary to understand both the cellular biology of these diseases and their variation. Research in these areas is vital to the development of viable therapeutic options for these currently untreatable diseases. The development and coordination of human brain specimen collection through brain banks is evolving. This perspective article from the Sydney Brain Bank reviews data concerning the best ways to collect and store material for different research purposes.
Aging
;
pathology
;
physiology
;
Biomedical Research
;
methods
;
Brain
;
pathology
;
physiopathology
;
Humans
;
Neurodegenerative Diseases
;
pathology
;
physiopathology
;
therapy
;
Tissue Banks
;
Tissue Preservation
8.Mutant Huntingtin Causes a Selective Decrease in the Expression of Synaptic Vesicle Protein 2C.
Chaohua PENG ; Gaochun ZHU ; Xiangqian LIU ; He LI
Neuroscience Bulletin 2018;34(5):747-758
Huntington's disease (HD) is a neurodegenerative disease caused by a polyglutamine expansion in the huntingtin (Htt) protein. Mutant Htt causes synaptic transmission dysfunctions by interfering in the expression of synaptic proteins, leading to early HD symptoms. Synaptic vesicle proteins 2 (SV2s), a family of synaptic vesicle proteins including 3 members, SV2A, SV2B, and SV2C, plays important roles in synaptic physiology. Here, we investigated whether the expression of SV2s is affected by mutant Htt in the brains of HD transgenic (TG) mice and Neuro2a mouse neuroblastoma cells (N2a cells) expressing mutant Htt. Western blot analysis showed that the protein levels of SV2A and SV2B were not significantly changed in the brains of HD TG mice expressing mutant Htt with 82 glutamine repeats. However, in the TG mouse brain there was a dramatic decrease in the protein level of SV2C, which has a restricted distribution pattern in regions particularly vulnerable in HD. Immunostaining revealed that the immunoreactivity of SV2C was progressively weakened in the basal ganglia and hippocampus of TG mice. RT-PCR demonstrated that the mRNA level of SV2C progressively declined in the TG mouse brain without detectable changes in the mRNA levels of SV2A and SV2B, indicating that mutant Htt selectively inhibits the transcriptional expression of SV2C. Furthermore, we found that only SV2C expression was progressively inhibited in N2a cells expressing a mutant Htt containing 120 glutamine repeats. These findings suggest that the synaptic dysfunction in HD results from the mutant Htt-mediated inhibition of SV2C transcriptional expression. These data also imply that the restricted distribution and decreased expression of SV2C contribute to the brain region-selective pathology of HD.
Aging
;
metabolism
;
Animals
;
Brain
;
metabolism
;
pathology
;
Cell Line, Tumor
;
Gene Expression
;
physiology
;
Huntingtin Protein
;
genetics
;
metabolism
;
Membrane Glycoproteins
;
metabolism
;
Mice
;
Mice, Transgenic
;
Mutation
;
Nerve Tissue Proteins
;
metabolism
;
RNA, Messenger
;
metabolism
;
Transcription, Genetic
;
physiology
9.Semen parameters from 2002 to 2013 in Korea young population: A preliminary report.
Soon Ki KIM ; Yoo Seok KIM ; In Chang CHO ; Seung Ki MIN
Korean Journal of Urology 2015;56(12):831-836
PURPOSE: To analyze the differences of semen parameters in Korean young population for three periods from 2002 to 2013. MATERIALS AND METHODS: A total of 516 semen samples were collected from Korean men presenting for infertility, varicoceles or other infectious problems for three periods from 2002 to 2012: January 2002-December 2003, January 2007-December 2008, and January 2012-December 2013. A standard World Health Organization procedure for semen analysis was performed for assessment of semen concentration, volume, motility, morphology, and pH. RESULTS: A total of 160, 162, 194 men constituted the study populations in 2002 to 2003, in 2007 to 2008, and in 2012 to 2013, respectively. The overall sperm parameter results suggested a statistically significant difference between 2002 to 2003 and 2012 to 2013 except pH. However, considering the data from 2007 to 2008, there were no trends in changes in overall semen parameters. Negative correlations were observed in all semen parameters with increasing age in all patients, except for pH. In addition, semen volume, motility, and morphology had higher negative correlation coefficients with age, from 2002 to 2013, serially. CONCLUSIONS: There were no significant changes in the semen parameters of Korean men from 2002 to 2013. In addition, semen volume, motility, and morphology showed higher negative correlation coefficients with age from 2002 to 2013, serially.
Adolescent
;
Adult
;
Aging/pathology/physiology
;
Humans
;
Hydrogen-Ion Concentration
;
Infertility, Male/*diagnosis
;
Male
;
Retrospective Studies
;
Semen
;
Semen Analysis/*methods
;
Sperm Count
;
Sperm Motility
;
Spermatozoa/cytology
;
Young Adult
10.Age-related white matter degradation rule of normal human brain: the evidence from diffusion tensor magnetic resonance imaging.
Xiang ZHANG ; Baoqing LI ; Baoci SHAN
Chinese Medical Journal 2014;127(3):532-537
BACKGROUNDDiffusion tensor imaging can evaluate white matter function in human brain. Fractional anisotropy is the most important parameter. This study aimed to find regional reduction of fractional anisotropy (FA) with aging in the whole brain and the changing rules of anisotropy with aging.
METHODSFifty volunteers from 20 to 75 years old were divided into five consecutive age groups; a young group and four senior groups. FA values were calculated with diffusion tensor imaging (DTI) studio software. The difference of FA between the young group and the four senior groups were analyzed by analysis of voxel-level height threshold in Statistic Parametric Mapping (SPM), and the regions with decreased FA were obtained. The FA values of these regions were then extracted using an in-house developed program, and a multiple linear regression model was built to assess the influence of age and sex on the FA values of these regions.
RESULTSEight regions, including frontal lobe, postcentral gyrus, optic radiation, hippocampus, cerebella hemisphere, corona radiate, corpus callosum and internal capsule, were found to have decreased FA. There was a strong negative correlation between age and the FA in the frontal lobe, postcentral gyrus, optic radiation, hippocampus, and cerebella hemisphere, while a weaker negative correlation in the corona radiate, corpus callosum, and internal capsule was found. The FA reduction in the frontal lobe, postcentral gyrus, optic radiation, hippocampus and cerebella hemisphere were found earlier than in the corona radiate, corpus callosum and internal capsule. There was no correlation between sex and FA in these regions.
CONCLUSIONSThe FA in the subcortical white matter area reduces earlier than that in deep white matter. The areas with decreased FA continuously enlarge with aging. The FAs in these regions have a strong negative correlation with age.
Adult ; Aged ; Aging ; physiology ; Brain ; pathology ; Diffusion Magnetic Resonance Imaging ; methods ; Female ; Humans ; Male ; Middle Aged ; White Matter ; pathology ; Young Adult

Result Analysis
Print
Save
E-mail