1.Protective effect of adrenomedullin on hyperoxia-induced lung injury.
Min ZHANG ; Li-Hua CHENG ; Xiao-Tong YIN ; Hao LUO ; Cheng CAI
Chinese Journal of Contemporary Pediatrics 2021;23(12):1282-1288
OBJECTIVES:
To study the role of adrenomedullin (ADM) in hyperoxia-induced lung injury by examining the effect of ADM on the expression of calcitonin receptor-like receptor (CRLR), receptor activity-modifying protein 2 (RAMP2), extracellular signal-regulated kinase (ERK), and protein kinase B (PKB) in human pulmonary microvascular endothelial cells (HPMECs) under different experimental conditions.
METHODS:
HPMECs were randomly divided into an air group and a hyperoxia group (
RESULTS:
Compared with the air group, the hyperoxia group had significant increases in the mRNA and protein expression levels of ADM, CRLR, RAMP2, ERK1/2, and PKB (
CONCLUSIONS
ERK1/2 and PKB may be the downstream targets of the ADM signaling pathway. ADM mediates the ERK/PKB signaling pathway by regulating CRLR/RAMP2 and participates in the protection of hyperoxia-induced lung injury.
Adrenomedullin/genetics*
;
Endothelial Cells
;
Humans
;
Hyperoxia/complications*
;
Lung Injury
;
Receptor Activity-Modifying Proteins
2.Intermedin in Paraventricular Nucleus Attenuates Sympathoexcitation and Decreases TLR4-Mediated Sympathetic Activation via Adrenomedullin Receptors in Rats with Obesity-Related Hypertension.
Jing SUN ; Xing-Sheng REN ; Ying KANG ; Hang-Bing DAI ; Lei DING ; Ning TONG ; Guo-Qing ZHU ; Ye-Bo ZHOU
Neuroscience Bulletin 2019;35(1):34-46
Intermedin/adrenomedullin-2 (IMD/AM2), a member of the calcitonin gene-related peptide/AM family, plays an important role in protecting the cardiovascular system. However, its role in the enhanced sympathoexcitation in obesity-related hypertension is unknown. In this study, we investigated the effects of IMD in the paraventricular nucleus (PVN) of the hypothalamus on sympathetic nerve activity (SNA), and lipopolysaccharide (LPS)-induced sympathetic activation in obesity-related hypertensive (OH) rats induced by a high-fat diet for 12 weeks. Acute experiments were performed under anesthesia. The dynamic alterations of sympathetic outflow were evaluated as changes in renal SNA and mean arterial pressure (MAP) in response to specific drugs. Male rats were fed a control diet (12% kcal as fat) or a high-fat diet (42% kcal as fat) for 12 weeks to induce OH. The results showed that IMD protein in the PVN was downregulated, but Toll-like receptor 4 (TLR4) and plasma norepinephrine (NE, indicating sympathetic hyperactivity) levels, and systolic blood pressure were increased in OH rats. LPS (0.5 µg/50 nL)-induced enhancement of renal SNA and MAP was greater in OH rats than in obese or control rats. Bilateral PVN microinjection of IMD (50 pmol) caused greater decreases in renal SNA and MAP in OH rats than in control rats, and inhibited LPS-induced sympathetic activation, and these were effectively prevented in OH rats by pretreatment with the AM receptor antagonist AM22-52. The mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) inhibitor U0126 in the PVN partially reversed the LPS-induced enhancement of SNA. However, IMD in the PVN decreased the LPS-induced ERK activation, which was also effectively prevented by AM22-52. Chronic IMD administration resulted in significant reductions in the plasma NE level and blood pressure in OH rats. Moreover, IMD lowered the TLR4 protein expression and ERK activation in the PVN, and decreased the LPS-induced sympathetic overactivity. These results indicate that IMD in the PVN attenuates SNA and hypertension, and decreases the ERK activation implicated in the LPS-induced enhancement of SNA in OH rats, and this is mediated by AM receptors.
Adrenomedullin
;
metabolism
;
Animals
;
Blood Pressure
;
drug effects
;
physiology
;
Hypertension
;
etiology
;
Lipopolysaccharides
;
pharmacology
;
Male
;
Neuropeptides
;
metabolism
;
Obesity
;
complications
;
Rats, Sprague-Dawley
;
Receptors, Adrenomedullin
;
drug effects
;
metabolism
;
Sympathetic Nervous System
;
drug effects
;
metabolism
;
Toll-Like Receptor 4
;
metabolism
3.Effects of intrathecal administration of AMon mechanical allodynia and CCL2 expression in DRG in bone cancer rats.
Ya-Juan CHEN ; Yuan-Hui HUO ; Yanguo HONG
Acta Physiologica Sinica 2017;69(1):70-76
The pain peptide adrenomedullin (AM) plays a pivotal role in pathological pain. The present study was designed to investigate the effect of blockade of AM receptor on bone cancer pain (BCP) and its mechanism. BCP was developed by inoculation of Walker 256 mammary gland carcinoma cells in the tibia medullary cavity of Sprague Dawley rats. The selective AM receptor antagonist AMwas administered intrathecally on 15 d after the inoculation. Quantitative real-time PCR was used to detect mRNA level of CC chemokine ligand 2 (CCL2) in dorsal root ganglion (DRG). Double immunofluorescence staining was used to analyze the localizations of CCL2 and AM in DRG of normal rats. The results showed that, from 6 to15 d after the inoculation, the animals showed significant reduction in the mechanical pain threshold in the ipsilateral hindpaw, companied by the decline in bone density of tibia bone. The expression of CCL2 mRNA in DRG of BCP rats was increased by 3 folds (P < 0.001 vs saline group). Intrathecal administration of AMabolished bone cancer-induced mechanical allodynia and increase of CCL2 mRNA level (P < 0.001). In normal rats, CCL2 was co-localized with AM in DRG neurons. These results suggest that AM may play a role in the pathogenesis of BCP. The increased AM bioactivity up-regulates CCL2 expression in DRG, which may contribute to the induction of pain hypersensitivity in bone cancer.
Adrenomedullin
;
administration & dosage
;
pharmacology
;
Animals
;
Bone Neoplasms
;
drug therapy
;
Chemokine CCL2
;
metabolism
;
Ganglia, Spinal
;
physiopathology
;
Hyperalgesia
;
drug therapy
;
Pain
;
drug therapy
;
Pain Threshold
;
Peptide Fragments
;
administration & dosage
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Real-Time Polymerase Chain Reaction
;
Receptors, Adrenomedullin
;
antagonists & inhibitors
4.Effects of hydrogen sulfide donor on production of adrenomedullin and atrial natriuretic peptide in rats with atherosclerosis.
Wei LI ; Jun-Bao DU ; Hong-Fang JIN
Chinese Journal of Contemporary Pediatrics 2015;17(10):1119-1123
OBJECTIVEEndogenous hydrogen sulfide (H2S), a novel gasotransmitter in cardiovascular regulation, plays an important protective role in the development and progression of atherosclerosis (AS). This study was designed to explore the effects of H2S donor on the production of adrenomedullin (ADM) and atrial natriuretic peptide (ANP) in AS rats.
METHODSMale Sprague-Dawley rats were randomly divided into control group (n=10), AS group (n=10), and AS+NaHS group (n=10). Rats in the AS and AS+NaHS groups were given 3-day intraperitoneal injections of vitamin D3 and 8-week high-fat diet to induce AS, and the rats in the AS+NaHS group were intraperitoneally injected with H2S donor NaHS. Oil red O staining was applied to detect changes in the areas of the atherosclerotic plaques in the aortic root and the coronary artery; sulfide-sensitive electrode method was used to measure the plasma concentration of H2S. ADM and ANP levels in plasma were determined by radioimmunoassay.
RESULTSCompared with the control group, marked atherosclerotic plaques were observed in the aortic root and the coronary artery in AS rats. Moreover, plasma H2S level decreased significantly, ADM level increased, and ANP level decreased significantly in AS rats (P<0.01). However, after the treatment with H2S donor NaHS for 8 weeks, the above changes in AS rats were reversed, demonstrated by significantly reduced areas of the atherosclerotic plaques in both the aortic root and the coronary artery, significantly increased plasma H2S level, significantly decreased plasma ADM level, and significantly increased plasma ANP level (P<0.01).
CONCLUSIONSH2S plays an important regulatory effect on vasoactive peptides ADM and ANP in AS rats.
Adrenomedullin ; biosynthesis ; Animals ; Atherosclerosis ; metabolism ; pathology ; Atrial Natriuretic Factor ; biosynthesis ; Hydrogen Sulfide ; pharmacology ; Male ; Rats ; Rats, Sprague-Dawley
5.Involvement of adrenomedullin in the pathogenesis of inflammatory pain and morphine tolerance.
Acta Physiologica Sinica 2015;67(4):431-436
The increase of pronociceptive mediators in the dorsal root ganglia (DRG) and spinal dorsal horn is an important mechanism in the pathogenesis of inflammatory pain and opioid tolerance. Adrenomedullin (AM) belongs to calcitonin gene-related peptide (CGRP) family and has been recently demonstrated to be a pain-related peptide. It has also been shown that the expression and release of AM are increased in the DRG and spinal dorsal horn during inflammation and repeated use of morphine. Intrathecal administration of the selective AM receptor antagonist AM22-52 abolishes inflammatory pain and morphine tolerance, suggesting that enhanced AM receptor signaling in the DRG and spinal dorsal horn contributes to the induction of inflammatory pain and morphine tolerance. The present review highlights the recent developments regarding the involvement of AM in these two disorders. The neurological mechanisms of AM's actions are also discussed.
Adrenomedullin
;
pharmacology
;
Animals
;
Calcitonin Gene-Related Peptide
;
Drug Tolerance
;
Ganglia, Spinal
;
drug effects
;
Inflammation
;
drug therapy
;
metabolism
;
Morphine
;
pharmacology
;
Pain
;
drug therapy
;
metabolism
;
Peptide Fragments
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Adrenomedullin
;
metabolism
6.Effect of adrenomedullin on renal arteriole remodeling in spontaneous hypertensive rats.
Shaomin WEI ; Jianzhong ZHANG ; Lingdi YANG ; Yue CHANG ; Fengying GUO ; Li JING
Journal of Southern Medical University 2014;34(8):1140-1144
OBJECTIVETo investigate the effect of adrenomedullin (ADM) on renal arteriole remodeling and phosphorylation of extracellular signal-regulated protein kinases 1/2 (p-ERK1/2) in spontaneous hypertensive rats (SHR).
METHODSMale SHR (4 weeks old) were randomized into hypertensive group (SHR) and ADM-treated group (ADM) to receive subcutaneous saline and ADM injections (daily dose of 1.0 nmol/kg, 5 days a week), respectively, with age-matched Wistar-Kyota (WKY) rats as the blank control. The systolic blood pressure (SBP) was measured at the end of each week, and histological changes of the renal arterioles were observed using HE and Weigert staining; the expression of P-ERK1/2 in the arterioles was detected with immunohistochemistry and Western blotting.
RESULTSAt 16 and 24 weeks of age, the rats in both SHR and ADM groups showed significantly higher SBP levels than WKY rats (P<0.05), and at 24 weeks, SBP was significantly lower in ADM group than in SHR group (P<0.05). The intima thickness/lumen diameter (IT/LD) ratio of the renal arterioles increased in both SHR and ADM groups at 16 and 24 weeks as compared with that of WKY rats (P<0.05), and for arterioles with an outer diameter <40 µm, the IT/LD ratio was significantly lower at 24 weeks in ADM group than in SHR group (P<0.05). The renal expression of p-ERK1/2, which increased significantly in SHR and ADM groups at 16 and 24 weeks (P<0.05), was significantly lower in ADM group than in SHR group at 24 weeks (P<0.05).
CONCLUSIONSLong-term ADM treatment can control SPB elevation in SHR rats and reduce renal arteriole remodeling by inhibiting the phosphorylation of ERK1/2.
Adrenomedullin ; pharmacology ; Animals ; Arterioles ; drug effects ; Blood Pressure ; Hypertension ; Kidney ; blood supply ; Male ; Mitogen-Activated Protein Kinase 1 ; metabolism ; Mitogen-Activated Protein Kinase 3 ; metabolism ; Rats ; Rats, Inbred SHR ; Rats, Wistar ; Vascular Remodeling
7.The antihypertensive effect of adrenomedullin 2 and related mechanism.
Jing XIE ; Yi CUI ; Bin GENG ; Chao-Shu TANG ; Qiang ZENG
Chinese Journal of Applied Physiology 2014;30(3):193-197
OBJECTIVETo observe the vasodilating effect of adrenomedullin 2 (ADM2) by antagonizing angiotensin 1 (Ang II), and to explore its mechanism.
METHODSEighteen male, 180-200 g SD rats were randomly divided into 3 groups (n = 6): control group, Ang II (150 ng/(kg x min)) group and Ang II (150 ng/(kg x min)) + ADM2(500 ng/(kg x h)) group. Mini-osmotic pumps filled with peptide were implanted in the back of rats subcutaneously. After two weeks, the blood pressure was measured by the way of carotid intubation. The plasma was collected for the detection of nitric oxide (NO) content and the activity of endothelial nitric oxide synthase (eNOS). The in situ oxidation of fluorescent dye dihydroethidium (DHE) was used for detecting superoxide in rat arteries. The rat isolated arterial rings were made for studying the vasodilating effect of ADM2. Human umbilical vein endothelial cell line EA. hy 926 cells were cultured and their intracellular reactive oxygen species (ROS) were evaluated by probe DCFH-DA.
RESULTSADM2 dramatically decreased the blood pressure in angiotensin II-induced hypertension rat model, enhanced plasma NO content and the activity of eNOS and reduced superoxide formation in vessel walls. ADM2 also induced relaxation of the vascular rings preconstricted by Ang II in a concentration-dependent and endothelium-dependent manner. In cultured vascular endothelium, ADM2 ameliorated the ROS generation induced by Ang II.
CONCLUSIONAdrenomedullin 2 relaxed blood vessels by antagonizing angiotensin II-induced oxidative stress and improving the vascular endothelial function.
Adrenomedullin ; pharmacology ; Angiotensin II ; pharmacology ; Animals ; Antihypertensive Agents ; pharmacology ; Blood Pressure ; drug effects ; Drug Antagonism ; Endothelium, Vascular ; drug effects ; Human Umbilical Vein Endothelial Cells ; cytology ; Humans ; Male ; Nitric Oxide ; blood ; Nitric Oxide Synthase Type III ; blood ; Oxidative Stress ; Rats ; Rats, Sprague-Dawley ; Reactive Oxygen Species ; metabolism ; Vasodilation ; drug effects
8.Roles of calcitonin gene-related peptide family in pain and opioid tolerance.
Acta Physiologica Sinica 2013;65(3):347-354
The calcitonin gene-related peptide (CGRP) family mainly includes CGRPα, CGRPβ, adrenomedullin, calcitonin and amylin. The members of CGRP family and their receptors are widely distributed in the central and peripheral nervous systems. Studies show that members of CGRP family such as CGRP and adrenomedullin play important roles in the transmission of nociceptive information. At spinal level, CGRP promotes the transmission of nociceptive information, spinal morphine tolerance, migraine, inflammatory pain and neuropathic pain. At superspinal level, CGRP suppresses the transmission of nociceptive information. Adrenomedullin is a pain-related neuropeptide which has recently been demonstrated. It facilitates the transmission of nociceptive information and is involved in the development and maintenance of opioid tolerance. The involvement of amylin and calcitonin in pain is not clear yet.
Adrenomedullin
;
physiology
;
Analgesics, Opioid
;
pharmacology
;
Animals
;
Calcitonin Gene-Related Peptide
;
physiology
;
Drug Tolerance
;
Humans
;
Islet Amyloid Polypeptide
;
physiology
;
Nociception
;
Pain
;
physiopathology
9.Adrenomedullin alleviates collagen accumulation in pulmonary arteries of rats with hypoxic pulmonary hypertension.
Jian-Guang QI ; Chang-Qing XING ; Ya-Guang DING ; Jun-Bao DU
Chinese Journal of Contemporary Pediatrics 2012;14(1):54-58
OBJECTIVETo observe the effect of adrenomedullin (ADM) on the pulmonary vascular collagen metabolism in hypoxic rats in order to study the effect of ADM on chronic hypoxic pulmonary vascular structural remodeling and its possible mechanism.
METHODSNineteen male Wistar rats were randomly divided into three groups: normal control (n=6), hypoxia (n=7) and ADM-treated hypoxia (n=6). ADM was subcutaneously administered into rats of the ADM-treated hypoxia group by mini-osmotic pump (300 ng/h) for two weeks. After two weeks of hypoxic challenge, mean pulmonary arterial pressure (mPAP) was evaluated using a right cardiac catheterization procedure. The ratio of right ventricular mass to left ventricular plus septal mass[RV/ (LV+S)] was measured. The changes of pulmonary vascular microstructure were observed. Meanwhile, the expression levels of collagen I, collagen III and transforming growth factor (TGF)-β in pulmonary arteries were detected by immunohistochemical assay.
RESULTSmPAP and RV/(LV+S) increased significantly in the hypoxia group compared with normal controls (P<0.01). The muscularization of small pulmonary vessels and the relative medial thickness of pulmonary arteries increased obviously in the hypoxia group compared with those in the normal control group (P<0.01). Meanwhile, the expression levels of collagen I, collagen III and TGF-β of pulmonary arteries in the hypoxia group increased markedly compared with those in the normal control group. However, mPAP and RV/(LV+S) were significantly reduced in the ADM-treated hypoxia group compared with those in the hypoxia group (P<0.01). ADM ameliorated pulmonary vascular structural remodeling of hypoxic rats, with a decrease in the expression of collagen I, collagen III and TGF-β of pulmonary arteries.
CONCLUSIONSADM might play a regulatory role in the development of hypoxic pulmonary hypertension and hypoxic pulmonary vascular remodeling, through inhibiting the expression of TGF-β and alleviating the collagen accumulation of pulmonary arteries.
Adrenomedullin ; pharmacology ; Animals ; Collagen ; metabolism ; Hypertension, Pulmonary ; etiology ; metabolism ; Hypoxia ; complications ; Male ; Pulmonary Artery ; metabolism ; Rats ; Rats, Wistar ; Transforming Growth Factor beta ; analysis ; physiology
10.Effect of exogenous adrenomedullin on renal and hypothalamus adrenomedullin expression in rats early after mechanical renal trauma.
Chou-yan CHEN ; Shao-hua SUN ; Cui-ping ZHONG ; Ying FENG
Journal of Southern Medical University 2011;31(6):1081-1085
OBJECTIVETo observe the effects of exogenous adrenomedullin (ADM) on endogenous expression of ADM in the kidney and hypothalamus of rats early after mechanical renal trauma.
METHODSAdult Wistar rats were randomized into 4 groups (n=32), namely the control group, renal impact trauma group, preventive ADM injection group, and therapeutic ADM injection group. In the latter two groups, ADM (0.1 nmol/kg) was administrated by intraperitoneal injection 10 min before and 10 min after renal trauma. The rats were executed at 1, 6, 12, and 24 h after the trauma to examine the expression of ADM in the kidney and hypothalamus.
RESULTSIn preventive ADM injection group, the renal expression of ADM increased significantly at 1 h after the trauma (P<0.05) and tended to further increase with time till 24 h when its expression recovered the normal level. In the therapeutic ADM injection group, strong renal ADM positivity was found at 1 and 6 h after the injury (P<0.05) followed by gradual decrease till recovering the normal level at 24 h. Low renal ADM expression was detected, which was the strongest at 1 and 12 h (P<0.05) and became normal at 24 h. The time course of ADM expression in the hypothalamus was similar to that in the kidney in the therapeutic ADM injection group, and in the preventive injection group, the strongest ADM expression in the hypothalamus occurred at 6 and 24 h, and the lowest expression occurred at 12 h (P<0.05). The trauma group showed significantly decreased ADM expression in the hypothalamus compared with the control group (P<0.05).
CONCLUSIONThe hypothalamic ADM expression can upregulate renal ADM expression. ADM maintains the relative stability of the internal environment and physiological activity by local and systemic positive and negative feedback mechanisms.
Adrenomedullin ; metabolism ; pharmacology ; Animals ; Female ; Hypothalamus ; drug effects ; metabolism ; Kidney ; drug effects ; injuries ; metabolism ; Male ; Rats ; Rats, Wistar ; Wounds and Injuries ; metabolism

Result Analysis
Print
Save
E-mail