1.β-arrestin2 recruitment by β-adrenergic receptor agonists and antagonists.
Yi-Ran WANG ; De-Qin CHENG ; Lan MA ; Xing LIU
Acta Physiologica Sinica 2022;74(6):993-1004
A large number of β-adrenergic receptor (β-AR) agonists and antagonists are widely used in the treatment of cardiovascular diseases and other diseases. Nonetheless, it remains unclear whether these commonly used β-AR drugs can activate downstream β- arrestin-biased signaling pathways. The objective of this study was to investigate β-arrestin2 recruitment effects of β-AR agonists and antagonists that were commonly used in clinical practice. We used TANGO (transcriptional activation following arrestin translocation) assay to detect the β-arrestin2 recruitment by β-AR ligands in HEK293 cell line (HTLA cells) stably transfected with tetracycline transactivator protein (tTA) dependent luciferase reporter and β-arrestin2-TEV fusion gene. Upon activation of β-AR by a β-AR ligand, β-arrestin2 was recruited to the C terminus of the receptor, followed by cleavage of the G protein-coupled receptors (GPCRs) fusion protein at the TEV protease-cleavage site. The cleavage resulted in the release of tTA, which, after being transported to the nucleus, activated transcription of the luciferase reporter gene. The results showed that β-AR non-selective agonists epinephrine, noradrenaline and isoprenaline all promoted β-arrestin2 recruitment at β1-AR and β2-AR. β1-AR selective agonists dobutamine and denopamine both promoted β-arrestin2 recruitment at β1-AR. β2-AR selective agonists procaterol and salbutamol promoted β-arrestin2 recruitment at β2-AR. β-AR non-selective antagonists alprenolol and pindolol promoted β-arrestin2 recruitment at β1-AR. β1-AR selective antagonists celiprolol and bevantolol showed β-arrestin2 recruitment at β1-AR. β2-AR selective antagonists butoxamine showed β-arrestin2 recruitment at β1-AR. These results provide some clues for the potential action of β-AR drugs, and lay a foundation for the screening of β-arrestin-biased β-AR ligands.
Humans
;
beta-Arrestin 2/metabolism*
;
HEK293 Cells
;
Adrenergic beta-Agonists/pharmacology*
;
Isoproterenol/pharmacology*
;
Receptors, Adrenergic, beta-2/metabolism*
;
Norepinephrine/pharmacology*
2.β3-adrenoceptor impacts apoptosis in cultured cardiomyocytes via activation of PI3K/Akt and p38MAPK.
Miao-miao MA ; Xiao-li ZHU ; Li WANG ; Xiao-fang HU ; Zhong WANG ; Jin ZHAO ; Yi-tong MA ; Yi-ning YANG ; Bang-dang CHEN ; Fen LIU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(1):1-7
β3-adrenoceptor (β3-AR) has been shown to promote myocardial apoptosis. However, the exact physiological role and importance of this receptor in the human myocardium, and its underlying mode of action, have not been fully elucidated. The present study aimed to determine the effects of β3-AR on the promotion of myocardial apoptosis and on norepinephrine (NE) injury. We analyzed NE-induced cardiomyocyte (CM) apoptosis by using a TUNEL and an annexin V/propidium iodide apoptosis assay. Furthermore, we investigated the NE-induced expression of the apoptosis marker genes Akt and p38MAPK, their phosphorylated counterparts p-Akt and p-p38MAPK, caspase-3, Bcl-2, and Bax. In addition, we determined the effect of a 48-h treatment with a β3-AR agonist and antagonist on expression of these marker genes. β3-AR overexpression was found to increase CM apoptosis, accompanied by an increased expression of caspase-3, bax/bcl-2, and p-p38MAPK. In contrast, the β3-blocker reduced apoptosis of CMs and the associated elevated Akt expression. We identified a novel and potent anti-apoptosis mechanism via the PI3K/Akt pathway and a pro-apoptosis pathway mediated by p38MAPK.
Adrenergic Agonists
;
pharmacology
;
Adrenergic Antagonists
;
pharmacology
;
Animals
;
Apoptosis
;
Cells, Cultured
;
Myocytes, Cardiac
;
drug effects
;
metabolism
;
Phosphatidylinositol 3-Kinases
;
metabolism
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Adrenergic, beta-3
;
genetics
;
metabolism
;
Signal Transduction
;
p38 Mitogen-Activated Protein Kinases
;
metabolism
3.Isoprenaline Induces Periostin Expression in Gastric Cancer.
Guo Xiao LIU ; Hong Qing XI ; Xiao Yan SUN ; Zhi Jun GENG ; Shao Wei YANG ; Yan Jie LU ; Bo WEI ; Lin CHEN
Yonsei Medical Journal 2016;57(3):557-564
PURPOSE: Periostin mediates critical steps in gastric cancer and is involved in various signaling pathways. However, the roles of periostin in promoting gastric cancer metastasis are not clear. The aim of this study was to investigate the relevance between periostin expression and gastric cancer progression and the role of stress-related hormones in the regulation of cancer development and progression. MATERIALS AND METHODS: Normal, cancerous and metastatic gastric tissues were collected from patients diagnosed with advanced gastric cancer. The in vivo expression of periostin was evaluated by in situ hybridization and immunofluorescent staining. Meanwhile, human gastric adenocarcinoma cell lines MKN-45 and BGC-803 were used to detect the in vitro expression of periostin by using quantitative real-time polymerase chain reaction (PCR) and western blotting. RESULTS: Periostin is expressed in the stroma of the primary gastric tumors and metastases, but not in normal gastric tissue. In addition, we observed that periostin is located mainly in pericryptal fibroblasts, but not in the tumor cells, and strongly correlated to the expression of α-smooth muscle actin (SMA). Furthermore, the distribution patterns of periostin were broader as the clinical staging of tumors progressed. We also identified a role of stress-related signaling in promoting cancer development and progression, and found that isoprenaline upregulated expression levels of periostin in gastric cancer cells. CONCLUSION: These findings suggest that the distribution pattern of periostin was broader as the clinical staging of the tumor progressed and found that isoprenaline upregulated expression levels of periostin in gastric cancer cells.
Adenocarcinoma/*metabolism/pathology
;
Adrenergic beta-Agonists/pharmacology
;
Aged
;
Blotting, Western
;
Cell Adhesion Molecules/drug effects/*metabolism
;
Cell Line, Tumor
;
Fibroblasts/*metabolism
;
Gene Expression Regulation, Neoplastic/*drug effects
;
Humans
;
Isoproterenol/*pharmacology
;
Male
;
Neoplasm Staging
;
RNA, Messenger/genetics/metabolism
;
Real-Time Polymerase Chain Reaction
;
Signal Transduction
;
Stomach/metabolism/pathology
;
Stomach Neoplasms/*metabolism/pathology
;
Up-Regulation
4.A "bitter" end to asthma revealed.
Protein & Cell 2011;2(6):433-434
Adrenergic beta-2 Receptor Agonists
;
pharmacology
;
Anti-Inflammatory Agents
;
pharmacology
;
Asthma
;
drug therapy
;
physiopathology
;
Chloroquine
;
pharmacology
;
Humans
;
Myocytes, Smooth Muscle
;
cytology
;
drug effects
;
metabolism
;
Quaternary Ammonium Compounds
;
pharmacology
;
Receptors, Adrenergic, beta-2
;
metabolism
;
Receptors, G-Protein-Coupled
;
agonists
;
metabolism
;
Receptors, Interleukin-4
;
antagonists & inhibitors
;
metabolism
;
Respiratory System
;
drug effects
;
metabolism
;
physiopathology
5.Comparing effects of U50488H, prazosin and/or propranolol on cardiac hypertrophy induced by NE in rat.
Gui-jun WANG ; Yu-sheng YAO ; Hong-xin WANG
Chinese Journal of Applied Physiology 2010;26(1):82-85
OBJECTIVETo demonstrate the inhibitory effect of kappa-opioid receptor activation by U50488H on hypertrophy induced by NE in cultured neonatal rat cardiac myocytes and compare its effect with that of prazosin and propranolol.
METHODSThe cellular proliferation was determined with crystal violet staining. The protein content was assayed with Lowry's method. The cardiomyocytes volumes were measured by computer photograph analysis system. The protein synthesis was assayed with [3H]-lencine incorporation method.
RESULTS(1) NE significantly induced the increase of protein content, [3H]-leucine incorporation and cell size without a concomitant increase in cell number in low serum medium. OThese responses were partially suppressed by prazosin or propranolol alone and completely abolished by both in combination. U50488H significantly inhibited the NE-induced increase of protein content, [3H]-leucine incorporation and cell size. The inhibitory effects of U50488H on NE-induced cardiac hypertrophy were greater than either prazosin or propranolol, but comparable to combination of both.
CONCLUSIONNE, acting via both alpha1- and beta-adrenergic pathway, stimulates myocyte hypertrophy. Stimulating kappa-opioid receptor significantly inhibits NE-induced cardiac hypertrophy, which may be related with alpha1- and beta1-adrenergic pathway.
3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer ; pharmacology ; Adrenergic alpha-1 Receptor Antagonists ; pharmacology ; Adrenergic beta-Antagonists ; pharmacology ; Animals ; Animals, Newborn ; Cardiomegaly ; chemically induced ; pathology ; prevention & control ; Cell Enlargement ; drug effects ; Cells, Cultured ; Female ; Male ; Myocytes, Cardiac ; cytology ; Norepinephrine ; Prazosin ; pharmacology ; Propranolol ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptors, Opioid, kappa ; agonists
6.Modulation of protective immunity against herpes simplex virus via mucosal genetic co-transfer of DNA vaccine with beta2-adrenergic agonist.
Seong Bum KIM ; Young Woo HAN ; M M RAHMAN ; Seon Ju KIM ; Dong Jin YOO ; Seong Ho KANG ; Koanhoi KIM ; Seong Kug EO
Experimental & Molecular Medicine 2009;41(11):812-823
Cholera toxin, which has been frequently used as mucosal adjuvant, leads to an irreversible activation of adenylyl cyclase, thereby accumulating cAMP in target cells. Here, it was assumed that beta2-adrenergic agonist salbutamol may have modulatory functions of immunity induced by DNA vaccine, since beta2-adrenergic agonists induce a temporary cAMP accumulation. To test this assumption, the present study evaluated the modulatory functions of salbutamol co-administered with DNA vaccine expressing gB of herpes simplex virus (HSV) via intranasal (i.n.) route. We found that the i.n. co-administration of salbutamol enhanced gB-specific IgG and IgA responses in both systemic and mucosal tissues, but optimal dosages of co-administered salbutamol were required to induce maximal immune responses. Moreover, the mucosal co-delivery of salbutamol with HSV DNA vaccine induced Th2-biased immunity against HSV antigen, as evidenced by IgG isotypes and Th1/Th2-type cytokine production. The enhanced immune responses caused by co-administration of salbutamol provided effective and rapid responses to HSV mucosal challenge, thereby conferring prolonged survival and reduced inflammation against viral infection. Therefore, these results suggest that salbutamol may be an attractive adjuvant for mucosal genetic transfer of DNA vaccine.
Adjuvants, Immunologic/*pharmacology
;
Adrenergic beta-Agonists/immunology/*pharmacology
;
Albuterol/immunology/*pharmacology
;
Animals
;
Antibodies, Viral/immunology
;
Cercopithecus aethiops
;
Cytokines/immunology
;
Dose-Response Relationship, Drug
;
Dose-Response Relationship, Immunologic
;
Herpes Simplex/immunology/*prevention & control
;
Herpes Simplex Virus Vaccines
;
Immunity, Mucosal/*drug effects/immunology
;
Immunoglobulin A/immunology
;
Immunoglobulin G/immunology
;
Mice
;
Simplexvirus/*immunology
;
Th1 Cells/immunology
;
Th2 Cells/immunology
;
Vaccines, DNA/*immunology/pharmacology
;
Vero Cells
;
Viral Envelope Proteins/immunology
7.Activation of PPARgamma induces profound multilocularization of adipocytes in adult mouse white adipose tissues.
Young Jun KOH ; Byung Hyun PARK ; Ji Hyun PARK ; Jinah HAN ; In Kyu LEE ; Jin Woo PARK ; Gou Young KOH
Experimental & Molecular Medicine 2009;41(12):880-895
We sought to determine the effects of activation of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) on multilocularization of adipocytes in adult white adipose tissue (WAT). Male C57BL/6 normal, db/db, and ob/ob mice were treated with agonists of PPAR-gamma, PPAR-alpha, or beta3-adrenoceptor for 3 weeks. To distinguish multilocular adipocytes from unilocular adipocytes, whole-mounted adipose tissues were co-immunostained for perilipin and collagen IV. PPAR-gamma activation with rosiglitazone or pioglitazone induced a profound change of unilocular adipocytes into smaller, multilocular adipocytes in adult WAT in a time-dependent, dose-dependent, and reversible manner. PPAR-alpha activation with fenofibrate did not affect the number of locules or remodeling. db/db and ob/ob obese mice exhibited less multilocularization in response to PPAR-gamma activation compared to normal mice. Nevertheless, all adipocytes activated by PPAR-gamma contained a single nucleus regardless of locule number. Multilocular adipocytes induced by PPAR-gamma activation contained substantially increased mitochondrial content and enhanced expression of uncoupling protein-1, PPAR-gamma coactivator-1-alpha , and perilipin. Taken together, PPAR-gamma activation induces profound multilocularization and enhanced mitochondrial biogenesis in the adipocytes of adult WAT. These changes may affect the overall function of WAT.
Adipocytes/*cytology/metabolism
;
Adipose Tissue, White/*cytology
;
Animals
;
Cell Nucleus Division
;
Hypoglycemic Agents/pharmacology
;
Ion Channels/metabolism
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Mice, Obese
;
Mitochondria/metabolism
;
Mitochondrial Proteins/metabolism
;
PPAR alpha/agonists/metabolism
;
PPAR gamma/*agonists/*metabolism
;
Phosphoproteins/metabolism
;
Receptors, Adrenergic, beta-3/agonists
;
Thiazolidinediones/pharmacology
;
Trans-Activators/metabolism
8.Alterations of epinephrine-induced gluconeogenesis in aging.
Kyungtae KIM ; Sung Chun CHO ; Anthony COVA ; Ik Soon JANG ; Sang Chul PARK
Experimental & Molecular Medicine 2009;41(5):334-340
The effects of glucagon and epinephrine on gluconeogenesis in young (4 month) and old (24 month) Fisher 344 rat hepatocytes were compared. In contrast to glucagon, which had a similar effect on gluconeogenesis in both young and old cells, epinephrine caused a smaller increase in gluconeogenesis in old rat hepatocytes than in young hepatocytes. beta2 adrenergic receptor (beta2-AR) expression slightly decreased in aged rat liver, and there were differences between young and old hepatocytes in their patterns of G protein coupled receptor kinases, which are involved in the activation of beta2-AR receptor signal desensitization. The major isoform of the kinase changed from GRK2 to GRK3 and the expression of beta-arrestin, which is recruited by the phosphorylated beta2-AR for internalization and degradation, increased in aged rat liver. GRK3 overexpression also decreased the glucose output from young rat hepatocytes. We conclude that an age-associated reduction in epinephrine-induced gluconeogenesis occurs through the epinephrine receptor desensitizing system.
Adrenergic beta-Agonists/*pharmacology
;
Aging/*drug effects
;
Animals
;
Epinephrine/*pharmacology
;
G-Protein-Coupled Receptor Kinase 2/metabolism
;
G-Protein-Coupled Receptor Kinase 3/metabolism
;
Glucagon/pharmacology
;
*Gluconeogenesis/drug effects
;
Male
;
Models, Biological
;
Phosphorylation
;
Rats
;
Rats, Inbred F344
;
Receptors, Adrenergic, beta-2/agonists/metabolism
9.Alterations of epinephrine-induced gluconeogenesis in aging.
Kyungtae KIM ; Sung Chun CHO ; Anthony COVA ; Ik Soon JANG ; Sang Chul PARK
Experimental & Molecular Medicine 2009;41(5):334-340
The effects of glucagon and epinephrine on gluconeogenesis in young (4 month) and old (24 month) Fisher 344 rat hepatocytes were compared. In contrast to glucagon, which had a similar effect on gluconeogenesis in both young and old cells, epinephrine caused a smaller increase in gluconeogenesis in old rat hepatocytes than in young hepatocytes. beta2 adrenergic receptor (beta2-AR) expression slightly decreased in aged rat liver, and there were differences between young and old hepatocytes in their patterns of G protein coupled receptor kinases, which are involved in the activation of beta2-AR receptor signal desensitization. The major isoform of the kinase changed from GRK2 to GRK3 and the expression of beta-arrestin, which is recruited by the phosphorylated beta2-AR for internalization and degradation, increased in aged rat liver. GRK3 overexpression also decreased the glucose output from young rat hepatocytes. We conclude that an age-associated reduction in epinephrine-induced gluconeogenesis occurs through the epinephrine receptor desensitizing system.
Adrenergic beta-Agonists/*pharmacology
;
Aging/*drug effects
;
Animals
;
Epinephrine/*pharmacology
;
G-Protein-Coupled Receptor Kinase 2/metabolism
;
G-Protein-Coupled Receptor Kinase 3/metabolism
;
Glucagon/pharmacology
;
*Gluconeogenesis/drug effects
;
Male
;
Models, Biological
;
Phosphorylation
;
Rats
;
Rats, Inbred F344
;
Receptors, Adrenergic, beta-2/agonists/metabolism
10.Regulation of resting intracellular Ca(2+) concentration of ventricular myocytes by beta(3)-adrenoceptor and its signaling pathway in rats with experimental heart failure.
Yi-jun DENG ; Wei WU ; Chang FANG ; Zhi-bing HUANG ; Jin-feng WANG
Journal of Southern Medical University 2009;29(8):1635-1637
OBJECTIVETo observe the effect of beta(3)-adrenoceptor (AR) in regulating resting intracellular Ca(2+) concentration of the ventricular myocytes and investigate the signaling pathway in rats with experimental heart failure.
METHODSRat models of experimental heart failure were established by ligation of the anterior descending artery, and the myocytes were isolated by enzymatic digestion. The resting intracellular Ca(2+) concentration was determined using laser scanning confocal microscopy (LSCM) in the cells stimulated with 1 micromol/L BRL37344 (a selective beta(3)-AR agonist) alone or in combination with PTX, L-NAME, or methylene blue.
RESULTSIn the ventricular myocytes from normal control rats, BRL373444 reduced the resting intracellular Ca(2+) concentration of by 45.5%, while the reduction increased to 59.4% in the cells from rats with heart failure. In combination with L-NAME (10 micromol/L), methylene blue (10 micromol/L), and PTX (2 microg/ml), BRL373444 caused a reduction in resting intracellular Ca(2+) concentration of the ventricle myocytes from normal control rats by 10.1%, 16.9%, and 15.4%, respectively in control group, while the rate was 16.9%, 19.3%, and 11.7% in the heart failure group.
CONCLUSIONSBeta(3)-AR agonist can decrease the resting intracellular Ca(2+) concentration of the ventricular myocytes, but the reduction is smaller in cells from rats with heart failure than in cells of normal rats. This effect is mediated through the PTX-NOS-NO pathway.
Adrenergic Agonists ; pharmacology ; Adrenergic beta-3 Receptor Agonists ; Animals ; Calcium ; metabolism ; Heart Failure ; chemically induced ; metabolism ; pathology ; Heart Ventricles ; pathology ; In Vitro Techniques ; Intracellular Space ; drug effects ; metabolism ; Male ; Myocytes, Cardiac ; drug effects ; metabolism ; pathology ; Rats ; Rats, Wistar ; Receptors, Adrenergic, beta-3 ; metabolism ; Rest ; Signal Transduction ; drug effects

Result Analysis
Print
Save
E-mail