1.Expression of adipokines in children with primary nephrotic syndrome and its association with hyperlipidemia.
Ru-Xin ZHANG ; Xuan ZHANG ; Bi-Li ZHANG ; Zhu-Feng LIU ; Shu-Xiang LIN
Chinese Journal of Contemporary Pediatrics 2021;23(8):828-834
OBJECTIVES:
To study the expression of adipokines in children with primary nephrotic syndrome (PNS) before and after treatment and its correlation with blood lipids, as well as the role of adipokines in PNS children with hyperlipidemia.
METHODS:
A total of 90 children who were diagnosed with incipient PNS or recurrence of PNS after corticosteroid withdrawal for more than 6 months were enrolled as subjects. Thirty children who underwent physical examination were enrolled as the control group. Venous blood samples were collected from the children in the control group and the children with PNS before corticosteroid therapy (active stage) and after urinary protein clearance following 4 weeks of corticosteroid therapy (remission stage). ELISA was used to measure the levels of adipokines. An automatic biochemical analyzer was used to measure blood lipid levels.
RESULTS:
Compared with the control group, the children with PNS had a significantly lower level of omentin-1 in both active and remission stages, and their level of omentin-1 in the active stage was significantly lower than that in the remission stage (
CONCLUSIONS
Omentin-1 may be associated with disease activity, dyslipidemia, and proteinuria in children with PNS. Blood lipid ratios may be more effective than traditional blood lipid parameters in monitoring early cardiovascular risk in children with PNS.
Adipokines
;
Chemokines
;
Child
;
Cytokines/metabolism*
;
GPI-Linked Proteins/metabolism*
;
Humans
;
Hyperlipidemias
;
Lectins/metabolism*
;
Lipids
;
Nephrotic Syndrome/drug therapy*
;
Proteinuria
2.Mitochondrial Dysfunction in Adipocytes as a Primary Cause of Adipose Tissue Inflammation
Chang Yun WOO ; Jung Eun JANG ; Seung Eun LEE ; Eun Hee KOH ; Ki Up LEE
Diabetes & Metabolism Journal 2019;43(3):247-256
Adipose tissue inflammation is considered a major contributing factor in the development of obesity-associated insulin resistance and cardiovascular diseases. However, the cause of adipose tissue inflammation is presently unclear. The role of mitochondria in white adipocytes has long been neglected because of their low abundance. However, recent evidence suggests that mitochondria are essential for maintaining metabolic homeostasis in white adipocytes. In a series of recent studies, we found that mitochondrial function in white adipocytes is essential to the synthesis of adiponectin, which is the most abundant adipokine synthesized from adipocytes, with many favorable effects on metabolism, including improvement of insulin sensitivity and reduction of atherosclerotic processes and systemic inflammation. From these results, we propose a new hypothesis that mitochondrial dysfunction in adipocytes is a primary cause of adipose tissue inflammation and compared this hypothesis with a prevailing concept that “adipose tissue hypoxia” may underlie adipose tissue dysfunction in obesity. Recent studies have emphasized the role of the mitochondrial quality control mechanism in maintaining mitochondrial function. Future studies are warranted to test whether an inadequate mitochondrial quality control mechanism is responsible for mitochondrial dysfunction in adipocytes and adipose tissue inflammation.
11-beta-Hydroxysteroid Dehydrogenases
;
Adipocytes
;
Adipocytes, White
;
Adipokines
;
Adiponectin
;
Adipose Tissue
;
Anoxia
;
Cardiovascular Diseases
;
Homeostasis
;
Inflammation
;
Insulin Resistance
;
Metabolism
;
Mitochondria
;
Nitric Oxide
;
Obesity
;
Quality Control
3.Regulation of Systemic Glucose Homeostasis by T Helper Type 2 Cytokines
Yea Eun KANG ; Hyun Jin KIM ; Minho SHONG
Diabetes & Metabolism Journal 2019;43(5):549-559
Obesity results in an inflammatory microenvironment in adipose tissue, leading to the deterioration of tissue protective mechanisms. Although recent studies suggested the importance of type 2 immunity in an anti-inflammatory microenvironment in adipose tissue, the regulatory effects of T helper 2 (Th2) cytokines on systemic metabolic regulation are not fully understood. Recently, we identified the roles of the Th2 cytokine (interleukin 4 [IL-4] and IL-13)-induced adipokine, growth differentiation factor 15 (GDF15), in adipose tissue in regulating systemic glucose metabolism via signal transducer and activator of transcription 6 (STAT6) activation. Moreover, we showed that mitochondrial oxidative phosphorylation is required to maintain these macrophage-regulating autocrine and paracrine signaling pathways via Th2 cytokine-induced secretion of GDF15. In this review, we discuss how the type 2 immune response and Th2 cytokines regulate metabolism in adipose tissue. Specifically, we review the systemic regulatory roles of Th2 cytokines in metabolic disease and the role of mitochondria in maintenance of type 2 responses in adipose tissue homeostasis.
Adipokines
;
Adipose Tissue
;
Cytokines
;
Glucose
;
Growth Differentiation Factor 15
;
Homeostasis
;
Metabolic Diseases
;
Metabolism
;
Mitochondria
;
Obesity
;
Oxidative Phosphorylation
;
Paracrine Communication
;
STAT6 Transcription Factor
4.Association of Adiponectin 45T/G Polymorphism with Diabetic Cardiovascular Complications in Korean Type 2 Diabetes.
Myeong Jin JI ; Eu Jeong KU ; Tae Keun OH ; Hyun Jeong JEON
Journal of Korean Medical Science 2018;33(17):e124-
BACKGROUND: Adiponectin is an adipokine that regulates lipid and glucose metabolism and has been shown to have anti-inflammatory and anti-atherogenic effects. It also plays an important role in the development of cardiovascular disease (CVD). METHODS: This study evaluated the association between adiponectin 45T/G polymorphism and cardiovascular complication in type 2 diabetes in Koreans. RESULTS: The present study included 758 patients with type 2 diabetes. The distribution of the adiponectin 45T/G polymorphism was 3.56% (n = 27) for GG, 42.35% (n = 321) for TG, and 54.09% (n = 410) for TT in patients with type 2 diabetes. The prevalence of CVD was significantly higher in subjects with the GG + TG genotype compared to those with the TT genotype (17.5% vs. 9.8%, P = 0.002). The G allele was associated with a higher risk of CVD (P = 0.002). CONCLUSION: Our findings suggest that the adiponectin 45T/G polymorphism is associated with diabetic cardiovascular complication in type 2 diabetes.
Adipokines
;
Adiponectin*
;
Alleles
;
Cardiovascular Diseases
;
Genotype
;
Glucose
;
Humans
;
Metabolism
;
Prevalence
5.Effects of high-fat diet induced obesity on tissue zinc concentrations and zinc transporter expressions in mice.
Byulchorong MIN ; Jayong CHUNG
Journal of Nutrition and Health 2018;51(6):489-497
PURPOSE: Obesity is often associated with disturbances in the mineral metabolism. The purpose of this study was to investigate the effects of high-fat diet-induced obesity on tissue zinc concentrations and zinc transporter expressions in mice. METHODS: C57BL/6J male mice were fed either a control diet (10% energy from fat, control group) or a high-fat diet (45% energy from fat, obese group) for 15 weeks. The zinc concentrations in the serum, stool, and various tissues were measured by inductively coupled plasma (ICP)-atomic emission spectrophotometry or ICP-mass spectrophotometry. The levels of zinc transporter mRNAs in the liver, duodenum, and pancreas were measured by real-time RT-PCR. The levels of serum adipokines, such as leptin and IL-6, were determined. RESULTS: The total body weight, adipose tissue weight, and hepatic TG and cholesterol concentrations were significantly higher in the obese group, as compared to the control group. The obese group had significantly higher levels of serum leptin and pro-inflammatory IL-6 concentrations, and had significantly lower levels of serum alkaline phosphatase activity. The zinc concentrations of the liver, kidney, duodenum, and pancreas were all significantly lower in the obese group than in the control group. On the other hand, the fecal zinc concentrations were significantly higher in the obese group than in the control group. The serum zinc concentrations were not significantly different between the two groups. The ZnT1 mRNA levels of the liver and the pancreas were significantly higher in the obese group, as compared to the control group. Hepatic Zip10 mRNA was also increased in the obese group. CONCLUSION: Our study findings suggest that obesity increases fecal zinc excretion and lowers the tissue zinc concentrations, which may be associated with alterations in the zinc transporter expressions.
Adipokines
;
Adipose Tissue
;
Alkaline Phosphatase
;
Animals
;
Body Weight
;
Cholesterol
;
Diet
;
Diet, High-Fat*
;
Duodenum
;
Hand
;
Humans
;
Interleukin-6
;
Kidney
;
Leptin
;
Liver
;
Male
;
Metabolism
;
Mice*
;
Miners
;
Obesity*
;
Pancreas
;
Plasma
;
RNA, Messenger
;
Spectrophotometry
;
Zinc*
6.The Effect of Adiponectin on the Regulation of Filaggrin Expression in Normal Human Epidermal Keratinocytes.
Sun Young CHOI ; Min Jeong KIM ; Ga Ram AHN ; Kui Young PARK ; Mi Kyung LEE ; Seong Jun SEO
Annals of Dermatology 2018;30(6):645-652
BACKGROUND: Adiponectin, an adipokine secreted from adipocytes, affects energy metabolism and also shows anti-diabetic and anti-inflammatory properties. Recent studies have reported that adiponectin plays a role in regulating skin inflammation. OBJECTIVE: This study aimed to investigate the effect of adiponectin on the expression of filaggrin (FLG) in normal human epidermal keratinocytes (NHEKs). METHODS: NHEKs were serum-starved for 6h before being treated with adiponectin. Afterward, cell viability was assessed by MTT assay. We also treated with calcium, interleukin (IL)-4, and IL-13 to provide positive and negative comparative controls, respectively. Gene mRNA expression was quantified using real time reverse transcription polymerase chain reaction, and protein expression was evaluated using Western blot. To evaluate the relationship among mitogen-activated protein kinases (MAPKs), activator protein 1 (AP-1), and FLG, we also treated cells with inhibitors for MAPKs JNK, p38, and ERK1/2. RESULTS: FLG and FLG-2 mRNA expression in NHEKs significantly increased after treatment with 10 µg/ml adiponectin. Adiponectin also restored FLG and FLG-2 mRNA expression that was otherwise inhibited by treatment with IL-4 and IL-13. Adiponectin induced FLG expression via AP-1 and MAPK signaling. CONCLUSION: Adiponectin positively regulated the expression of FLG and could be useful as a therapeutic agent to control diseases related to disrupted skin barrier function.
Adipocytes
;
Adipokines
;
Adiponectin*
;
Blotting, Western
;
Calcium
;
Cell Differentiation
;
Cell Survival
;
Energy Metabolism
;
Humans*
;
Inflammation
;
Interleukin-13
;
Interleukin-4
;
Interleukins
;
Keratinocytes*
;
Mitogen-Activated Protein Kinases
;
Polymerase Chain Reaction
;
Reverse Transcription
;
RNA, Messenger
;
Skin
;
Transcription Factor AP-1
7.Mangiferin ameliorates insulin resistance by inhibiting inflammation and regulatiing adipokine expression in adipocytes under hypoxic condition.
Chao-Qiang YANG ; Jing-Hua XU ; Dan-Dan YAN ; Bao-Lin LIU ; Kang LIU ; Fang HUANG
Chinese Journal of Natural Medicines (English Ed.) 2017;15(9):664-673
Adipose tissue hypoxia has been recognized as the initiation of insulin resistance syndromes. The aim of the present study was to investigate the effects of mangiferin on the insulin signaling pathway and explore whether mangiferin could ameliorate insulin resistance caused by hypoxia in adipose tissue. Differentiated 3T3-L1 adipocytes were incubated under normal and hypoxic conditions, respectively. Protein expressions were analyzed by Western blotting. Inflammatory cytokines and HIF-1-dependent genes were tested by ELISA and q-PCR, respectively. The glucose uptake was detected by fluorescence microscopy. HIF-1α was abundantly expressed during 8 h of hypoxic incubation. Inflammatory reaction was activated by up-regulated NF-κB phosphorylation and released cytokines like IL-6 and TNF-α. Glucose uptake was inhibited and insulin signaling pathway was damaged as well. Mangiferin substantially inhibited the expression of HIF-1α. Lactate acid and lipolysis, products released by glycometabolism and lipolysis, were also inhibited. The expression of inflammatory cytokines was significantly reduced and the damaged insulin signaling pathway was restored to proper functional level. The glucose uptake of hypoxic adipocytes was promoted and the dysfunction of adipocytes was relieved. These results showed that mangiferin could not only improve the damaged insulin signaling pathway in hypoxic adipocytes, but also ameliorate inflammatory reaction and insulin resistance caused by hypoxia.
3T3-L1 Cells
;
Adipocytes
;
drug effects
;
immunology
;
Adipokines
;
genetics
;
immunology
;
Animals
;
Cell Hypoxia
;
drug effects
;
Glucose
;
metabolism
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
genetics
;
immunology
;
Insulin
;
metabolism
;
Insulin Resistance
;
Mice
;
NF-kappa B
;
genetics
;
immunology
;
Oxygen
;
metabolism
;
Tumor Necrosis Factor-alpha
;
genetics
;
immunology
;
Xanthones
;
pharmacology
8.Recent advances of miRNAs in adipose tissues.
Yuntao GUO ; Xiuxiu ZHANG ; Wanlong HUANG ; Xiangyang MIAO
Chinese Journal of Biotechnology 2016;32(2):151-163
microRNAs (miRNAs), a class of endogenous non-coding RNA about 22 nucleotide long, regulate gene expression at the post-transcription level by inhibiting the translation or inducing the degradation of their target mRNAs in organisms. A lot of studies reveal that miRNAs in adipose tissues are involved in adipocyte differentiation and lipid metabolism and modulated by multiple transcription factors, adipocytokines and environmental factors, which form a complex regulatory network maintaining the homeostasis of adipose tissues. The discovery of circulating miRNAs adds new elements to the regulatory network. To study the metabolic diseases such as obesity, we should keep a new insight into the complex dynamic network. In this review, we summarize the latest studies of miRNAs in adipose tissues, which might provide new strategies for the treatment of obesity and other related diseases.
Adipokines
;
metabolism
;
Adipose Tissue
;
metabolism
;
Cell Differentiation
;
Gene Expression Regulation
;
Humans
;
Lipid Metabolism
;
MicroRNAs
;
metabolism
;
Obesity
;
metabolism
;
RNA, Messenger
;
Transcription Factors
;
metabolism
9.Association of Adipokines, Insulin Resistance, Hypertension and Dyslipidemia in Patients with Psoriasis Vulgaris.
Melis COBAN ; Levent TASLI ; Sebahat TURGUT ; Seyma OZKAN ; Melek TUNC ATA ; Fulya AKIN
Annals of Dermatology 2016;28(1):74-79
BACKGROUND: Systemic inflammation in psoriasis causes insulin resistance and cardiovascular diseases. Adipokines are adipose-tissue-derived factors that are involved in metabolic processes. It is thought that these adipokines are associated with the development of psoriasis. OBJECTIVE: The purpose of this study was to determine the changes in adipokine levels, insulin resistance, hypertension, and dyslipidemia over a 12-week period. METHODS: The study comprised 35 psoriasis patients and 50 controls. Blood samples were obtained twice from the patients, one sample at the start and one at the end of a 12-week follow-up period. The following parameters were assessed in both groups: serum fasting glucose, fasting insulin, homeostasis model assessment-estimated insulin resistance (HOMA-IR) index, serum lipids, adiponectin, leptin, resistin, chemerin, omentin, vaspin, visfatin, retinol-binding protein 4, and high-sensitivity C-reactive protein (hs-CRP) levels; blood pressure; body mass index; and the psoriasis area severity index (PASI) scores. RESULTS: The patients showed an improvement in the PASI score and a significant decrease in serum hs-CRP, omentin, and chemerin values. Moreover, at the start of the follow-up, the psoriasis patients had significantly lower levels of adiponectin and visfatin and significantly higher levels of vaspin and resistin than those of the control group. Visfatin levels correlated negatively with low-density lipoprotein (LDL) and cholesterol, while vaspin and omentin levels correlated positively with diastolic blood pressure. Decreased adiponectin levels correlated negatively with diastolic blood pressure and LDL. CONCLUSION: Plasma levels of adipokines might be useful for evaluating the disease activity of psoriasis and its comorbidities.
Adipokines*
;
Adiponectin
;
Blood Pressure
;
Body Mass Index
;
C-Reactive Protein
;
Cardiovascular Diseases
;
Cholesterol
;
Comorbidity
;
Dyslipidemias*
;
Fasting
;
Follow-Up Studies
;
Glucose
;
Homeostasis
;
Humans
;
Hypertension*
;
Inflammation
;
Insulin Resistance*
;
Insulin*
;
Leptin
;
Lipoproteins
;
Metabolism
;
Nicotinamide Phosphoribosyltransferase
;
Plasma
;
Psoriasis*
;
Resistin
10.Amelioration of metabolic disturbances and adipokine dysregulation by mugwort (Artemisia princeps P.) extract in high-fat diet-induced obese rats.
Yun Hye KIM ; Chung Mu PARK ; Gun Ae YOON
Journal of Nutrition and Health 2016;49(6):411-419
PURPOSE: Dysregulation of adipokines caused by excess adipose tissue has been implicated in the development of obesity-related metabolic diseases. This study evaluated the effects of mugwort (Artemisia princeps Pampanini) ethanol extract on lipid metabolic changes, insulin resistance, adipokine balance, and body fat reduction in obese rats. METHODS: Male Sprague-Dawley rats were fed either a control diet (NC), high-fat diet (HF, 40% kcal from fat), or high-fat diet with 1% mugwort extract (HFM) for 6 weeks. RESULTS: Epididymal and retroperitoneal fat mass increased in the HF group compared with the NC group, and epididymal fat mass was reduced in the HFM group (p < 0.05). No difference was observed in serum levels of total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-C) among the groups. However, triglyceride (TG), TG/HDL-C ratio, and TC/HDL-C ratio increased in the HF group and significantly decreased in the HFM group. TG and TC levels in the liver were significantly higher in the HF group, whereas these levels were significantly reduced in the HFM group. HF rats had lower insulin sensitivity as indicated by increased homeostasis model assessment of the insulin resistance (HOMA-IR) value. HOMA-IR values significantly decreased in the HFM group. Adiponectin levels were higher in NC rats, and their leptin and PAI-1 levels were lower. Relative balance of adipokines was reversed in the HF group, with lower adiponectin levels but higher leptin and PAI-1 levels. In contrast, the HFM group maintained balance of adiponectin/leptin and adiponectin/PAI-1 levels similar to NC by reducing leptin and PAI-1 levels. CONCLUSION: Overall data indicated that mugwort extract can be effective in alleviating metabolic dislipidemia, insulin resistance, and adipokine dysregulation induced by a high-fat diet.
Adipokines*
;
Adiponectin
;
Adipose Tissue
;
Animals
;
Artemisia*
;
Cholesterol
;
Diet
;
Diet, High-Fat
;
Ethanol
;
Homeostasis
;
Humans
;
Insulin Resistance
;
Intra-Abdominal Fat
;
Leptin
;
Lipid Metabolism
;
Lipoproteins
;
Liver
;
Male
;
Metabolic Diseases
;
Plasminogen Activator Inhibitor 1
;
Rats*
;
Rats, Sprague-Dawley
;
Triglycerides

Result Analysis
Print
Save
E-mail