1.Cloning, identification and functional analysis of the goat transcription factor c-fos.
Tingting HU ; Yong WANG ; Dingshuang CHEN ; Chengsi GONG ; Yanyan LI ; Yan XIONG ; Jianmei WANG ; Zhixiong LI ; Yaqiu LIN
Chinese Journal of Biotechnology 2023;39(4):1684-1695
		                        		
		                        			
		                        			C-fos is a transcription factor that plays an important role in cell proliferation, differentiation and tumor formation. The aim of this study was to clone the goat c-fos gene, clarify its biological characteristics, and further reveal its regulatory role in the differentiation of goat subcutaneous adipocytes. We cloned the c-fos gene from subcutaneous adipose tissue of Jianzhou big-eared goats by reverse transcription-polymerase chain reaction (RT-PCR) and analyzed its biological characteristics. Using real-time quantitative PCR (qPCR), we detected the expression of c-fos gene in the heart, liver, spleen, lung, kidney, subcutaneous fat, longissimus dorsi and subcutaneous adipocytes of goat upon induced differentiation for 0 h to 120 h. The goat overexpression vector pEGFP-c-fos was constructed and transfected into the subcutaneous preadipocytes for induced differentiation. The morphological changes of lipid droplet accumulation were observed by oil red O staining and bodipy staining. Furthermore, qPCR was used to test the relative mRNA level of the c-fos overexpression on adipogenic differentiation marker genes. The results showed that the cloned goat c-fos gene was 1 477 bp in length, in which the coding sequence was 1 143 bp, encoding a protein of 380 amino acids. Protein structure analysis showed that goat FOS protein has a basic leucine zipper structure, and subcellular localization prediction suggested that it was mainly distributed in the nucleus. The relative expression level of c-fos was higher in the subcutaneous adipose tissue of goats (P < 0.05), and the expression level of c-fos was significantly increased upon induced differentiation of subcutaneous preadipocyte for 48 h (P < 0.01). Overexpression of c-fos significantly inhibited the lipid droplets formation in goat subcutaneous adipocytes, significantly decreased the relative expression levels of the AP2 and C/EBPβ lipogenic marker genes (P < 0.01). Moreover, AP2 and C/EBPβ promoter are predicted to have multiple binding sites. In conclusion, the results indicated that c-fos gene was a negative regulatory factor of subcutaneous adipocyte differentiation in goats, and it might regulate the expression of AP2 and C/EBPβ gene expression.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Goats/genetics*
		                        			;
		                        		
		                        			Cell Differentiation/genetics*
		                        			;
		                        		
		                        			Adipogenesis/genetics*
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			Proteins/genetics*
		                        			;
		                        		
		                        			Cloning, Molecular
		                        			
		                        		
		                        	
2.Gene cloning and sequence analysis of the RPL29 gene and its effect on lipogenesis in goat intramuscular adipocytes.
Chengsi GONG ; Yaqiu LIN ; Tingting HU ; Yong WANG ; Yanyan LI ; Youli WANG
Chinese Journal of Biotechnology 2023;39(7):2695-2705
		                        		
		                        			
		                        			The aim of this study was to clone the goat RPL29 gene and analyze its effect on lipogenesis in intramuscular adipocytes. Using Jianzhou big-eared goats as the object, the goat RPL29 gene was cloned by reverse transcription-polymerase chain reaction (RT-PCR), the gene structure and expressed protein sequence were analyzed by bioinformatics, and the mRNA expression levels of RPL29 in various tissues and different differentiation stages of intramuscular adipocytes of goats were detected by quantitative real-time PCR (qRT-PCR). The RPL29 overexpression vector pEGFP-N1-RPL29 constructed by gene recombination was used to transfect into goat intramuscular preadipocytes and induce differentiation. Subsequently, the effect of overexpression of RPL29 on fat droplet accumulation was revealed morphologically by oil red O and Bodipy staining, and changes in the expression levels of genes related to lipid metabolism were detected by qRT-PCR. The results showed that the length of the goat RPL29 was 507 bp, including a coding sequence (CDS) region of 471 bp which encodes 156 amino acid residues. It is a positively charged and stable hydrophilic protein mainly distributed in the nucleus of cells. Tissue expression profiling showed that the expression level of this gene was much higher in subcutaneous adipose tissue and inter-abdominal adipose tissue of goats than in other tissues (P < 0.05). The temporal expression profile showed that the gene was expressed at the highest level at 84 h of differentiation in goat intramuscular adipocytes, which was highly significantly higher than that in the undifferentiated period (P < 0.01). Overexpression of RPL29 promoted lipid accumulation in intramuscular adipocytes, and the optical density values of oil red O staining were significantly increased (P < 0.05). In addition, overexpression of RPL29 was followed by a highly significant increase in ATGL and ACC gene expression (P < 0.01) and a significant increase in FASN gene expression (P < 0.05). In conclusion, the goat RPL29 may promote intra-muscular adipocyte deposition in goats by up-regulating FASN, ACC and ATGL.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Lipogenesis/genetics*
		                        			;
		                        		
		                        			Adipogenesis/genetics*
		                        			;
		                        		
		                        			Goats/genetics*
		                        			;
		                        		
		                        			Adipocytes
		                        			;
		                        		
		                        			Cell Differentiation/genetics*
		                        			;
		                        		
		                        			Sequence Analysis
		                        			;
		                        		
		                        			Cloning, Molecular
		                        			
		                        		
		                        	
3.Bone Marrow Adipocytes Promote the Survival of Multiple Myeloma Cells and Up-Regulate Their Chemoresistance.
Xiao-Qian WEI ; Yang-Min ZHANG ; Yu SUN ; Hua-Yu LING ; Yuan-Ning HE ; Jin-Xiang FU
Journal of Experimental Hematology 2023;31(1):154-161
		                        		
		                        			OBJECTIVE:
		                        			To investigate the effect of adipocytes in the bone marrow microenvironment of patients with multiple myeloma (MM) on the pathogenesis of MM.
		                        		
		                        			METHODS:
		                        			Bone marrow adipocytes (BMA) in bone marrow smears of health donors (HD) and newly diagnosed MM (ND-MM) patients were evaluated with oil red O staining. The mesenchymal stem cells (MSC) from HD and ND-MM patients were isolated, and in vitro co-culture assay was used to explore the effects of MM cells on the adipogenic differentiation of MSC and the role of BMA in the survival and drug resistance of MM cells. The expression of adipogenic/osteogenic differentiation-related genes PPAR-γ, DLK1, DGAT1, FABP4, FASN and ALP both in MSC and MSC-derived adipocytes was determined with real-time quantitative PCR. The Western blot was employed to detect the expression levels of IL-6, IL-10, SDF-1α, TNF-α and IGF-1 in the supernatant with or without PPAR-γ inhibitor.
		                        		
		                        			RESULTS:
		                        			The results of oil red O staining of bone marrow smears showed that BMA increased significantly in patients of ND-MM compared with the normal control group, and the BMA content was related to the disease status. The content of BMA decreased in the patients with effective chemotherapy. MM cells up-regulated the expression of MSC adipogenic differentiation-related genes PPAR-γ, DLK1, DGAT1, FABP4 and FASN, but the expression of osteogenic differentiation-related gene ALP was significantly down-regulated. This means that the direct consequence of the interaction between MM cells and MSC in the bone marrow microenvironment is to promote the differentiation of MSC into adipocytes at the expense of osteoblasts, and the cytokines detected in supernatant changed. PPAR-γ inhibitor G3335 could partially reverse the release of cytokines by BMA. Those results confirmed that BMA regulated the release of cytokines via PPAR-γ signal, and PPAR-γ inhibitor G3335 could distort PPAR-γ mediated BMA maturation and cytokines release. The increased BMA and related cytokines effectively promoted the proliferation, migration and drug resistance of MM cells.
		                        		
		                        			CONCLUSION
		                        			The BMA and its associated cytokines are the promoting factors in the survival, proliferation and migration of MM cells. BMA can protect MM cells from drug-induced apoptosis and plays an important role in MM treatment failure and disease progression.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Osteogenesis/genetics*
		                        			;
		                        		
		                        			Bone Marrow/metabolism*
		                        			;
		                        		
		                        			Multiple Myeloma/metabolism*
		                        			;
		                        		
		                        			Drug Resistance, Neoplasm
		                        			;
		                        		
		                        			Peroxisome Proliferator-Activated Receptors/pharmacology*
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Adipogenesis
		                        			;
		                        		
		                        			Cytokines/metabolism*
		                        			;
		                        		
		                        			Adipocytes/metabolism*
		                        			;
		                        		
		                        			Bone Marrow Cells/metabolism*
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			PPAR gamma/pharmacology*
		                        			;
		                        		
		                        			Tumor Microenvironment
		                        			
		                        		
		                        	
4.Effect of PKM2 on Osteogenic and Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells in Myeloma Bone Disease.
Jiang-Hua DING ; Shao-Lin YANG ; Shu-Lang ZHU
Journal of Experimental Hematology 2023;31(1):170-178
		                        		
		                        			OBJECTIVE:
		                        			To investigate the expression of pyruvate kinase M2 (PKM2) in bone marrow mesenchymal stem cells (BMSCs) in myeloma bone disease (MBD) and its effect on osteogenic and adipogenic differentiation of BMSCs.
		                        		
		                        			METHODS:
		                        			BMSCs were isolated from bone marrow of five patients with multiple myeloma (MM) (MM group) and five with iron deficiency anemia (control group) for culture and identification. The expression of PKM2 protein were compared between the two groups. The differences between osteogenic and adipogenic differentiation of BMSCs were assessed by using alkaline phosphatase (ALP) and oil red O staining, and detecting marker genes of osteogenesis and adipogenesis. The effect of MM cell line (RPMI-8226) and BMSCs co-culture on the expression of PKM2 was explored. Functional analysis was performed to investigate the correlations of PKM2 expression of MM-derived BMSCs with osteogenic and adipogenic differentiation by employing PKM2 activator and inhibitor. The role of orlistat was explored in regulating PKM2 expression, osteogenic and adipogenic differentiation of MM-derived BMSCs.
		                        		
		                        			RESULTS:
		                        			Compared with control, MM-originated BMSCs possessed the ability of increased adipogenic and decreased osteogenic differentiation, and higher level of PKM2 protein. Co-culture of MM cells with BMSCs markedly up-regulated the expression of PKM2 of BMSCs. Up-regulation of PKM2 expression could promote adipogenic differentiation and inhibit osteogenic differentiation of MM-derived BMSCs, while down-regulation of PKM2 showed opposite effect. Orlistat significantly promoted osteogenic differentiation in MM-derived BMSCs via inhibiting the expression of PKM2.
		                        		
		                        			CONCLUSION
		                        			The overexpression of PKM2 can induce the inhibition of osteogenic differentiation of BMSCs in MBD. Orlistat can promote the osteogenic differentiation of BMSCs via inhibiting the expression of PKM2, indicating a potential novel agent of anti-MBD therapy.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Adipogenesis
		                        			;
		                        		
		                        			Bone Diseases/metabolism*
		                        			;
		                        		
		                        			Bone Marrow Cells
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Mesenchymal Stem Cells/physiology*
		                        			;
		                        		
		                        			Multiple Myeloma/metabolism*
		                        			;
		                        		
		                        			Orlistat/pharmacology*
		                        			;
		                        		
		                        			Osteogenesis/genetics*
		                        			
		                        		
		                        	
5.miR-23b-3p regulates the differentiation of goat intramuscular preadipocytes by targeting the PDE4B gene.
Liyi ZHANG ; Xin LI ; Qing XU ; Xinzhu HUANG ; Yanyan LI ; Wei LIU ; Youli WANG ; Yaqiu LIN
Chinese Journal of Biotechnology 2023;39(12):4887-4900
		                        		
		                        			
		                        			This study aimed to explore the effect of miR-23b-3p on the differentiation of goat intramuscular preadipocytes, and to confirm whether miR-23b-3p plays its roles via targeting the PDE4B gene. Based on the pre-transcriptome sequencing data obtained previously, the miR-23b-3p, which was differentially expressed in goat intramuscular adipocytes before and after differentiation, was used as an entry point. real-time quantitative-polymerase chain reaction (qPCR) was used to detect the expression pattern of miR-23b-3p during the differentiation of goat intramuscular preadipocytes. The effects of miR-23b-3p on adipose differentiation and adipose differentiation marker genes were determined at the morphological and molecular levels. The downstream target genes of miR-23b-3p were determined using bioinformatics prediction as well as dual luciferase reporter assay to clarify the targeting relationship between miR-23b-3p and the predicted target genes. The results indicated that overexpression of miR-23b-3p reduced lipid droplet accumulation in goat intramuscular adipocytes, significantly down-regulated the expression levels of adipogenic marker genes AP2, C/EBPα, FASN, and LPL (P < 0.01). In addition, the expressions of C/EBPβ, DGAT2, GLUT4 and PPARγ were significantly downregulated (P < 0.05). After interfering with the expression of miR-23b-3p, lipid droplet accumulation was increased in goat intramuscular adipocytes. The expression levels of ACC, ATGL, AP2, DGAT2, GLUT4, FASN and SREBP1 were extremely significantly up-regulated (P < 0.01), and the expression levels of C/EBPβ, LPL and PPARγ were significantly up-regulated (P < 0.05). It was predicted that PDE4B might be a target gene of miR-23b-3p. The mRNA expression level of PDE4B was significantly decreased after overexpression of miR-23b-3p (P < 0.01), and the interference with miR-23b-3p significantly increased the mRNA level of PDE4B (P < 0.05). The dual luciferase reporter assay indicated that miR-23b-3p had a targeting relationship with PDE4B gene. MiR-23b-3p regulates the differentiation of goat intramuscular preadipocytes by targeting the PDE4B gene.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			MicroRNAs/metabolism*
		                        			;
		                        		
		                        			Goats/genetics*
		                        			;
		                        		
		                        			PPAR gamma/metabolism*
		                        			;
		                        		
		                        			Adipogenesis/genetics*
		                        			;
		                        		
		                        			Cell Differentiation/genetics*
		                        			;
		                        		
		                        			Luciferases
		                        			;
		                        		
		                        			RNA, Messenger
		                        			
		                        		
		                        	
6.Research progress in Th17 cells and the relevant cytokines in Graves ' ophthalmopathy.
Minmin JIANG ; Jingxiao ZHAO ; Ping WANG ; Shuxun YAN ; Ying WANG
Journal of Central South University(Medical Sciences) 2022;47(12):1748-1753
		                        		
		                        			
		                        			Graves' ophthalmopathy is the most common clinical orbital disease, and T helper (Th) cells play an important role in the development of Graves' ophthalmopathy. Th17 cells are a major subpopulation of Th cells and abnormally highly expressed in patients with Graves' ophthalmopathy. Th17 cells and the related cytokines interleukin (IL)-17A, IL-21 and IL-23 are involved in regulating the inflammatory response, fibrosis and adipogenesis. Th17 cells are unstable and exhibit a degree of plasticity, and they can differentiate into IL-17A and interferon (IFN)-γ dual-producing Th17.1 cells, which exacerbate the pathogenicity of Th17 cells. In addition, Th17 cells and the relevant factors are strongly associated with disease activity and severity in Graves' ophthalmopathy.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Cytokines
		                        			;
		                        		
		                        			Th17 Cells
		                        			;
		                        		
		                        			Graves Ophthalmopathy
		                        			;
		                        		
		                        			Adipogenesis
		                        			
		                        		
		                        	
7.Knockdown of long non-coding RNA MIR4697 host gene inhibits adipogenic differentiation in bone marrow mesenchymal stem cells.
Ting SHUAI ; Juan LIU ; Yan Yan GUO ; Chan Yuan JIN
Journal of Peking University(Health Sciences) 2022;54(2):320-326
		                        		
		                        			OBJECTIVE:
		                        			To preliminarily investigate the role of long non-coding RNA (lncRNA) MIR4697 host gene (MIR4697HG) in regulating the adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs).
		                        		
		                        			METHODS:
		                        			For adipogenic differentiation, BMSCs were induced in adipogenic media for 10 days. The mRNA expression levels of lncRNA MIR4697HG and adipogenic marker genes including peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhanced binding protein α (CEBP/α) and adiponectin (ADIPQ) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) at different time points (0, 1, 2, 3, 5, 7, 10 days). The MIR4697HG stable knockdown-BMSC cell line was generated by infection of MIR4697HG shRNA-containing lentiviruses. To avoid off-target effect, two target sequences (shMIR4697HG-1, shMIR4697HG-2) were designed. And then cells were induced to differentiate in adipogenic medium. Oil red O staining, Western blot and qRT-PCR were used to detect the effect of MIR4697HG knockdown on adipogenic differentiation of BMSCs.
		                        		
		                        			RESULTS:
		                        			The mRNA expression level of MIR4697HG was significantly increased during adipogenic differentiation (P < 0.01), and adipogenic differentiation of BMSCs was evidenced by upregulated mRNA levels of specific adipogenesis-related genes including PPARγ, CEBP/α and ADIPQ. Observed by fluorescence microscopy, more than 90% transfected target cells expressed green fluorescent protein successfully after shMIR4697HG-1 group, shMIR4697HG-2 group and shNC group transfection for 72 h. And the transfection efficiency of MIR4697HG examined by qRT-PCR was above 60%. Then the BMSCs were treated with adipogenic media for 7 days and showed that the mRNA expression levels of adipogenesis-related genes including PPARγ, CEBP/α and ADIPQ were significantly decreased in the MIR4697HG knockdown group (P < 0.01), while the expression levels of PPARγ and CEBP/α proteins were decreased remarkably as well (P < 0.01). Consistently, MIR4697HG knockdown BMSCs formed less lipid droplets compared with the control BMSCs, which further demonstrated that MIR4697HG knockdown inhibited adipogenic differentiation of BMSCs.
		                        		
		                        			CONCLUSION
		                        			lncRNA MIR4697HG played a crucial role in regulating the adipogenic differentiation of BMSCs, and MIR4697HG knockdown significantly inhibited the adipogenic differentiation of BMSCs. These data may suggest that lncRNA MIR4697HG could serve as a therapeutic potential target for the aberrant adipogenic differentiation-associated disorders including osteoporosis.
		                        		
		                        		
		                        		
		                        			Adipogenesis/genetics*
		                        			;
		                        		
		                        			Bone Marrow Cells/metabolism*
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Mesenchymal Stem Cells
		                        			;
		                        		
		                        			Osteogenesis
		                        			;
		                        		
		                        			PPAR gamma/pharmacology*
		                        			;
		                        		
		                        			RNA, Long Noncoding/genetics*
		                        			;
		                        		
		                        			RNA, Messenger/metabolism*
		                        			
		                        		
		                        	
8.The effect of fat mass and obesity associated proteins mediated mRNA m6A modification on animal fat deposition and its application prospects.
Tingting TIAN ; Xudong YI ; Weijun PANG
Chinese Journal of Biotechnology 2022;38(1):119-129
		                        		
		                        			
		                        			In the process of animal fat deposition, the proliferation and differentiation of pre-adipocytes and the change of lipid droplet content in adipocytes are regulated by a series of transcription factors and signal pathways. Although researchers have conducted in-depth studies on the transcriptional regulation mechanisms of adipogenesis, there are relatively few reports on post-transcriptional modification on mRNA levels. The modification of mRNA m6A regulated by methyltransferase, demethylase and methylation reading protein is a dynamic and reversible process, which is closely related to fat deposition in animals. Fat mass and obesity associated proteins (FTO) act as RNA demethylases that affect the expression of modified genes and play a key role in fat deposition. This article summarized the mechanism of FTO-mediated demethylation of mRNA m6A in the process of animal fat deposition, suggesting that FTO may become a target for effective treatment of obesity. Moreover, this review summarized the development of FTO inhibitors in recent years.
		                        		
		                        		
		                        		
		                        			Adipocytes
		                        			;
		                        		
		                        			Adipogenesis/genetics*
		                        			;
		                        		
		                        			Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics*
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Obesity/genetics*
		                        			;
		                        		
		                        			RNA, Messenger/genetics*
		                        			
		                        		
		                        	
9.Overexpression of ATF3 inhibits the differentiation of goat intramuscular preadipocytes.
Chongyang WANG ; Cheng LUO ; Hao ZHANG ; Xin LI ; Yanyan LI ; Yan XIONG ; Youli WANG ; Yaqiu LIN
Chinese Journal of Biotechnology 2022;38(8):2939-2947
		                        		
		                        			
		                        			The aim of this study was to investigate the effect of activating transcription factor 3 (ATF3) on the differentiation of intramuscular preadipocytes in goat, and to elucidate its possible action pathway at the molecular level. In this study, the recombinant plasmid of goat pEGFP-N1-ATF3 was constructed, and the intramuscular preadipocytes were transfected with liposomes. The relative expression levels of adipocyte differentiation marker genes were detected by quantitative real-time PCR (qRT-PCR). After transfection of goat intramuscular preadipocytes with the goat pEGFP-N1-ATF3 overexpression vector, it was found that the accumulation of lipid droplets was inhibited, and the adipocyte differentiation markers PPARγ, C/EBPα and SREBP1 were extremely significantly down-regulated (P < 0.01), while C/EBPβ and AP2 were significantly down-regulated (P < 0.05). The ATF3 binding sites were predicted to exist in the promoter regions of PPARγ, C/EBPα and AP2 by the ALGGEN PROMO program. The overexpression of goat ATF3 inhibits the accumulation of lipid droplets in intramuscular preadipocytes, and this effect may be achieved by down-regulating PPARγ, C/EBPα and AP2. These results may facilitate elucidation of the regulatory mechanism of ATF3 in regulating the differentiation of goat intramuscular preadipocytes.
		                        		
		                        		
		                        		
		                        			3T3-L1 Cells
		                        			;
		                        		
		                        			Activating Transcription Factor 3/pharmacology*
		                        			;
		                        		
		                        			Adipocytes
		                        			;
		                        		
		                        			Adipogenesis/genetics*
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			CCAAT-Enhancer-Binding Protein-alpha/pharmacology*
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Goats
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			PPAR gamma/metabolism*
		                        			
		                        		
		                        	
10.Tribbles pseudokinase 3 inhibits the adipogenic differentiation of human adipose-derived mesenchymal stem cells.
Xiang Song BAI ; Long Wei LV ; Yong Sheng ZHOU
Journal of Peking University(Health Sciences) 2020;52(1):1-9
		                        		
		                        			OBJECTIVE:
		                        			To identify the role of Tribbles pseudokinase 3 (TRIB3) during the process of adipogenic differentiation of human adipose-derived mesenchymal stem cells (hASCs), and to provide a new target and a novel idea for the application of hASCs in adipose tissue engineering and soft tissue regeneration.
		                        		
		                        			METHODS:
		                        			TRIB3-knockdown hASCs (shTRIB3) and TRIB3-overexpression hASCs (TRIB3-over) were established using lentivirus transfection technique. The transfection effect was estimated by the visible presence of green fluorescence as the expression of green fluorescent protein (GFP) in the transfected hASCs. The lentiviral transfection efficiency was examined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. After adipogenic induction, Oil Red staining and quantification, as well as qRT-PCR about several specific adipogenic markers were used to evaluate the adipogenic differentiation ability of hASCs.
		                        		
		                        			RESULTS:
		                        			In TRIB3-knockdown hASCs, the TRIB3 mRNA expression level decreased by about 84.3% compared with the control group (P<0.01), and the TRIB3 protein level also showed obvious reduction. Oppositely, in TRIB3-overexpression hASCs, the TRIB3 mRNA expression level increased by approximately 160% compared with the control group (P<0.01), and the TRIB3 protein level also showed a significant increase. These results indicated a successful construction of TRIB3-knockdown hASCs and TRIB3-overexpression hASCs. The Oil Red staining results showed that the down-regulation of TRIB3 significantly promoted lipid droplets formation in hASCs, consistent with Oil Red quantification. On the other hand, the up-regulation of TRIB3 suppressed lipid droplets formation in hASCs, consistent with Oil Red quantification. After adipogenic induction, adipogenesis-related genes, including peroxisome proliferator-activated receptor γ (PPARγ), cluster of differentiation 36 (CD36) and CCAAT/enhancer binding protein α (C/EBPα), were increased significantly in TRIB3-knockdown hASCs compared with the control group (P<0.01). Oppositely, PPARγ, CD36 and lipoprotein lipase (LPL) were significantly decreased in TRIB3-overexpression hASCs compared with the control group (P<0.01).
		                        		
		                        			CONCLUSION
		                        			TRIB3 inhibited the adipogenic differentiation of hASCs. Knockdown of TRIB3 promoted the ability of adipogenesis of hASCs, while overexpression of TRIB3 inhibited the adipogenic differentiation of hASCs. Considering the important role of PPARγ in the adipogenis process, the molecular mechanism of the regulatory function of TRIB3 may be related with PPARγ signal pathway.
		                        		
		                        		
		                        		
		                        			Adipogenesis
		                        			;
		                        		
		                        			Adipose Tissue
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Mesenchymal Stem Cells
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail