1.Epimedium koreanum Nakai and its main constituent icariin suppress lipid accumulation during adipocyte differentiation of 3T3-L1 preadipocytes.
Yunk-Yung HAN ; Mi-Young SONG ; Min-Sub HWANG ; Ji-Hye HWANG ; Yong-Ki PARK ; Hyo-Won JUNG
Chinese Journal of Natural Medicines (English Ed.) 2016;14(9):671-676
		                        		
		                        			
		                        			Obesity is associated with a number of metabolic abnormalities such as type 2 diabetes and has become a major health problem worldwide. In the present study, we investigated the effects of Epimedium koreanum Nakai (Herba Epimedii, HE) and its main constituent icariin on the adipocyte differentiation in 3T3-L1 preadipocytes. HE extract and icariin significantly reduced lipid accumulation and suppressed the expressions of PPARγ, C/EBPα, and SREBP-1c in 3T3-L1 adipocytes. They also inhibited fatty acid synthase (FAS), acyl-Co A synthase (ACS1), and perilipin. Moreover, HE extract and icariin markedly increased the phosphorylation of AMPK. These results indicated that HE extract and icariin can inhibit the adipocyte differentiation through downregulation of the adipogenic transcription factors, suggesting that HE containing icariin may be used as a potential therapeutic agent in the treatment and prevention of obesity.
		                        		
		                        		
		                        		
		                        			3T3-L1 Cells
		                        			;
		                        		
		                        			Adipocytes
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Adipogenesis
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			CCAAT-Enhancer-Binding Protein-alpha
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Epimedium
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Flavonoids
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Lipid Metabolism
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			PPAR gamma
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Sterol Regulatory Element Binding Protein 1
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
2.Synthesis and evaluation of benzylisoquinoline derivatives for their inhibition on pancreatic lipase and preadipocyte proliferation.
Feng TIAN ; Hao-Yu LV ; Ji-Long ZOU ; Yi WANG ; Meng-Jun DUAN ; Xiao-Qin CHU ; Dan LI ; Liang ZHU ; Jian-Qin JIANG
Chinese Journal of Natural Medicines (English Ed.) 2016;14(5):382-390
		                        		
		                        			
		                        			The present study was designed to synthesize and evaluate a series of benzylisoquinoline derivatives. These compounds were synthesized by Bischler-Napieralski cyclization to yield 1-benzyl-3,4-dihydroisoquinolines, and the products were obtained by reductions. All these compounds were identified by MS, (1)H NMR and (13)C NMR. The inhibitory activities on pancreatic lipase and preadipocyte proliferation for the synthesized compounds and alkaloids from Nulembo nucifera were assessed in vitro. Most of the compounds showed inhibitory activities on both pancreatic lipase and preadipocyte proliferation. Particularly, compounds 7p-7u and 9d-9f exhibited significant inhibitory activity on pancreatic lipase while compounds 7c, 7d, 7f, 7g, 7i, and 7j potently inhibited the proliferation of 3T3-L1 preadipocytes. Our results provided a basis for future evaluation and development of these compounds as leads for therapeutics for human diseases.
		                        		
		                        		
		                        		
		                        			Adipocytes
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Benzylisoquinolines
		                        			;
		                        		
		                        			chemical synthesis
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Enzyme Inhibitors
		                        			;
		                        		
		                        			chemical synthesis
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lipase
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Structure-Activity Relationship
		                        			
		                        		
		                        	
3.Glucagon-like peptide-1 regulates lipometabolism by down-regulating adipose triglyceride lipase in 3T3-L1 adipocytes.
Huili ZHU ; Zeping WENG ; Chenli LIN ; Jiwei MA ; Xueyun ZHONG
Journal of Southern Medical University 2013;33(10):1499-1503
OBJECTIVETo investigate the effect of glucagon-like peptide-1 (GLP-1) on glycolipid metabolism in 3T3-L1 adipocytes and explore the mechanism.
METHODS3T3-L1 adipocytes were treated with GLP-1, insulin, or both for 24 h, and Western blotting was used to analyze the expression levels of adipose triglyceride lipase (ATGL), glucose transporter type 4 (GLUT4), Akt1, Akt2 and phosphorylated Akt in the cells. Immunofluorescence was used to observe lipid content in 3T3-L1 adipocytes.
RESULTSAkt1 and Akt2 were not activated by insulin stimulation in 3T3-L1 adipocytes. Akt was phosphorylated by GLP-1 stimulation, which inhibited the expression of ATGL and increased the translocation of GLUT4 from the intracellular membranes to plasma membranes. These changes were more obvious under the synergistic effect of insulin in 3T3-L1 adipocytes.
CONCLUSIONGLP-1 decreases lipolysis by inhibiting the expression of ATGL and improves insulin resistance by increasing the translocation of GLUT4 in 3T3-L1 adipocytes.
3T3-L1 Cells ; Adipocytes ; cytology ; metabolism ; Animals ; Cell Membrane ; metabolism ; Down-Regulation ; Drug Synergism ; Glucagon-Like Peptide 1 ; pharmacology ; Glucose Transporter Type 4 ; metabolism ; Insulin ; pharmacology ; Insulin Resistance ; Intracellular Membranes ; metabolism ; Lipase ; metabolism ; Mice ; Phosphorylation ; Protein Transport ; drug effects ; Proto-Oncogene Proteins c-akt ; metabolism
4.Fibrin glue increases the cell survival and the transduced gene product secretion of the ceiling culture-derived adipocytes transplanted in mice.
Yasuyuki AOYAGI ; Masayuki KURODA ; Sakiyo ASADA ; Hideaki BUJO ; Shigeaki TANAKA ; Shunichi KONNO ; Masami TANIO ; Itsuko ISHII ; Masayuki ASO ; Yasushi SAITO
Experimental & Molecular Medicine 2011;43(3):161-167
		                        		
		                        			
		                        			The development of clinically applicable scaffolds is important for the application of cell transplantation in various human diseases. The aims of this study are to evaluate fibrin glue in a novel protein replacement therapy using proliferative adipocytes and to develop a mouse model system to monitor the delivery of the transgene product into the blood and the fate of the transduced cells after transplantation. Proliferative adipocytes from mouse adipose tissue were transduced by a retroviral vector harboring the human lecithin-cholesterol acyltransferase (lcat) gene, and were subcutaneously transplanted into mice combined with fibrin glue. The lcat gene transduction efficiency and the subsequent secretion of the product in mouse adipocytes were enhanced using a protamine concentration of 500 microg/ml. Adipogenesis induction did not significantly affect the lcat gene-transduced cell survival after transplantation. Immunohistochemistry showed the ectopic enzyme production to persist for 28 days in the subcutaneously transplanted gene-transduced adipocytes. The increased viability of transplanted cells with fibrin glue was accompanied with the decrease in apoptotic cell death. The immunodetectable serum LCAT levels in mice implanted with the fibrin glue were comparable with those observed in mice implanted with Matrigel, indicating that the transplanted lcat gene-transduced adipocytes survived and functioned in the transplanted spaces with fibrin glue as well as with Matrigel for 28 days. Thus, this in vivo system using fibrin is expected to serve as a good model to further improve the transplanted cell/scaffold conditions for the stable and durable cell-based replacement of defective proteins in patients with LCAT deficiency.
		                        		
		                        		
		                        		
		                        			Adipocytes/*cytology/transplantation
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Blotting, Western
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Cell Survival/drug effects
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Collagen/metabolism
		                        			;
		                        		
		                        			Drug Combinations
		                        			;
		                        		
		                        			Drug Delivery Systems
		                        			;
		                        		
		                        			Fibrin Tissue Adhesive/*administration & dosage
		                        			;
		                        		
		                        			Genetic Vectors/administration & dosage
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Laminin/metabolism
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Mice, Nude
		                        			;
		                        		
		                        			Phosphatidylcholine-Sterol O-Acyltransferase/*genetics/*metabolism
		                        			;
		                        		
		                        			Proteoglycans/metabolism
		                        			;
		                        		
		                        			RNA, Messenger/genetics
		                        			;
		                        		
		                        			Reverse Transcriptase Polymerase Chain Reaction
		                        			;
		                        		
		                        			*Tissue Engineering
		                        			
		                        		
		                        	
5.Effects of huanglian jiedu decoction and its disassembled recipes containing serums on the proliferation and differentiation of preadipocytes.
Yang ZHANG ; Lian-zhu ZHANG ; Yong LIN
Chinese Journal of Integrated Traditional and Western Medicine 2011;31(9):1259-1263
OBJECTIVETo study the effects and mechanisms of Huanglian Jiedu Decoction (HJD) and its disassembled recipes containing serums on the proliferation and differentiation of preadipocytes.
METHODSHJD and its disassembled recipes containing serums were prepared. The 3T3-L1 preadipocytes were cultured. The proliferation of 3T3-L1 preadipocytes was detected by methyl thiazolyl tetrazolium (MTT) method. The accumulation of lipid droplets in the cytoplasm of differentiated preadipocytes was observed by oil red O staining and quantitatively analyzed by colorimetry. The mRNA expressions of peroxisome proliferation activated receptor y (PPAR gamma) and CAAT/enhancer binding protein (C/EBP alpha) were detected by reverse transcription polymerase chain reaction (RT-PCR).
RESULTSIntervention with serum containing HJD, Phellodendron amurense Rupr plus Gardenia jasminoides Ellis, or Gardenia jasminoides Ellis showed significantly stimulative effects on the proliferation of preadipocytes, as compared with that in the blank control group (P<0.05, P<0.01). The preadipocytes treated with serum containing HJD, Phellodendron amurense Rupr plus Gardenia jasminoides Ellis, Coptis chinensis Franch or Gardenia jasminoides Ellis showed that the lipid droplets in the cytoplasm were significantly lessened, so did the mRNA expressions of PPAR gamma and C/EBP alpha when compared with the blank control group (P<0.05, P<0.01).
CONCLUSIONSHJD promoted the proliferation of preadipocytes, decreased the accumulation of lipid droplets during the differentiation of adipocytes, and inhibited the differentiation of adipocytes, which might be associated with its effects on decreasing the mRNA expressions of PPAR gamma and C/EBP alpha. Phellodendron amurense Rupr and Gardenia jasminoides Ellis were the main components of HJD playing these roles.
3T3-L1 Cells ; Adipocytes ; cytology ; drug effects ; metabolism ; Animals ; CCAAT-Enhancer-Binding Protein-alpha ; metabolism ; Cell Differentiation ; drug effects ; Cell Proliferation ; drug effects ; Drugs, Chinese Herbal ; pharmacology ; Mice ; PPAR gamma ; metabolism ; Rats ; Rats, Sprague-Dawley ; Serum
7.Effect and underlying mechanism of resveratol on porcine primary preadipocyte apoptosis.
Zhao ZHANG ; Yang YANG ; Weijun PANG ; Chao SUN ; Gongshe YANG
Chinese Journal of Biotechnology 2010;26(8):1042-1049
		                        		
		                        			
		                        			We demonstrated the effect of resveratrol on porcine primary preadipocytes apoptosis, to study the intracellular molecular mechanism. Porcine primary preadipocyte was treated with different concentration of resveratrol (0 micromol/L, 50 micromol/L, 100 micromol/L, 200 micromol/L, 400 micromol/L). We used optical microscope and fluorescence microscope to observe morphological changes during apoptosis after Hoechst 33258 Fluorescent dyes staining; and RT-PCR and Western blotting to measure the expression of apoptosis-associated gene sirt1, caspase-3, bcl-2, bax, p53, NF-kappaB. Primary preadipocyte apoptosis was apparent, accompanied by reduced cell volume, chromatin condensation, and nuclear shrinkage. Compared to the control and low concentration group, high dose group (200 micromol/L) significantly increased the ratio of primary preadipocyte apoptosis. The expression of sirt1, caspase-3, and bax was up-regulated markedly in response to resveratrol; in contrast, apoptotic inhibitor bcl-2, p53, NF-kappaB down-regulated. We further proved fact that resveratrol can specifically promote the activity of sirt1; moreover, activated sirt1 modulates the activity of caspase-3 and bcl-2 family, involving in transcriptional regulation of p53 and NF-kappaB through antagonizing factor-induced acetylation. Taken together, our data established resveratrol as new regulator in porcine primary preadipocyte apoptosis via activating the expression of sirt1, modulating activity of apoptotic-associated factor.
		                        		
		                        		
		                        		
		                        			Adipocytes
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Adipogenesis
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antioxidants
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Caspase 3
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Sirtuin 1
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Stilbenes
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Swine
		                        			
		                        		
		                        	
8.Pharmacodyamic material basis of rhizoma coptidis on insulin resistance.
Jiachuan LI ; Xianli MENG ; Xinjian FAN ; Xianrong LAI ; Yi ZHANG ; Yong ZENG
China Journal of Chinese Materia Medica 2010;35(14):1855-1858
OBJECTIVETo observe the impact of Rhizoma Coptidis (drug-chemical extract parts-components) on 3T3-L1 pre-adipocytes differentiation and adipocytes insulin resistance, and reveal the pharmacodyamic material basis of Rhizoma Coptidis on insulin resistance.
METHOD3T3-L1 pre-adipocytes were well cultured, and then induced to differentiate into fat cells by using dexamethasone, 3-isobutyl-1-methyl-xanthine and insulin together, and establish the insulin resistance model. Based on the experience of traditional medicine use, the adipocytes differentiation and the glucose consumption in the cell culture medium were observed independently.
RESULTAqueous extract, different chemical extract fraction and different alkaloid extract from the herb showed inhibitory effects on 3T3-L1 pre-adipocytes differentiation, especially the compound coptisine significantly inhibited the differentiation in the concentration of 16.5 micromol x L(-1), but non-alkaloid extract from the herb promoted cell differentiation significantly in the concentration of 6.0 micromol x L(-1). Each treatment group, especially jatrorrhizine hydrochloride (in the concentration of 10.5 micromol x L(-1)) significantly decreased the concentration of glucose in 3T3-L1 adipocytes culture, at the same time improved insulin resistance. These effects are similar to the role of rosiglitazone maleate.
CONCLUSIONRhizoma Coptidis significantly improved insulin resistance, prevented pre-adipocytes differentiation. Its efficacy may be the synergistic effect of various components. Meanwhile, its role in inhibiting differentiation of pre-adipocytes indicates that coptis to increasing glucose uptake dose not cause fat accumulation and weight increasing. This has some clinical significance in the insulin resistance and metabolic syndrome.
3T3-L1 Cells ; Adipocytes ; cytology ; drug effects ; metabolism ; Animals ; Cell Differentiation ; drug effects ; Drugs, Chinese Herbal ; pharmacology ; Glucose ; metabolism ; Insulin Resistance ; Mice ; Rhizome ; chemistry
9.Chronic high dose of insulin stimulates lipolysis in porcine adipocytes.
Yongqing YANG ; Dapeng JU ; Mingtao ZHANG ; Gongshe YANG
Chinese Journal of Biotechnology 2009;25(1):16-22
		                        		
		                        			
		                        			To explore the effect of chronic high dose of insulin on lipolysis in porcine adipocytes and the underlying molecular regulation mechanisms, we cultured primary porcine adipocytes and incubated them with different concentrations of insulin (0, 200, 400, 800, 1600 nmol/L) for 24-96 h in the absence or presence of specific protein kinase A (PKA) inhibitor or extracellular signal-related kinase (ERK) inhibitor. Then, we measured the glycerol release into the culture media as an indicator of the lipolysis, and observed the lipid accumulation morphology by phase-contrast microscopy. Further, we analyzed the gene expressions of perilipin A and peroxisome proliferator-activated receptor-gamma 2 (PPAR gamma 2) with semi-quantitative RT-PCR and Western blotting, respectively. The results showed that chronic high dose of insulin stimulated lipolysis in differentiated porcine adipocytes in a dose- and time-dependent manner, and significantly attenuated the lipolytic response to isoprenaline. Meanwhile, the protein and mRNA expressions of PPAR gamma 2 and perilipin A were significantly reduced. In addition, both PKA and ERK inhibitors significantly suppressed insulin-stimulated lipolysis, however, only ERK inhibitor reversed the insulin-induced down-regulation of perilipin A. These findings imply that chronic high dose of insulin stimulates lipolysis in porcine adipocytes by repressing perilipin A, which is involved in ERK pathway.
		                        		
		                        		
		                        		
		                        			Adipocytes
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Carrier Proteins
		                        			;
		                        		
		                        			Dose-Response Relationship, Drug
		                        			;
		                        		
		                        			Down-Regulation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Insulin
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Lipolysis
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Perilipin-1
		                        			;
		                        		
		                        			Phosphoproteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Swine
		                        			
		                        		
		                        	
10.The mechanism of calcium signal regulate preadipocyte differentiation and lipid accumulation in mice.
Li WANG ; Chao SUN ; Jingquan KANG
Chinese Journal of Biotechnology 2009;25(5):739-744
		                        		
		                        			
		                        			We stimulated preadipocyte of mice with calcium acetate, p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580, the paralysors and excitomotors of calcium channel. Then we detected expression level of preadipocyte differentiation's marker genes and calcium signal related acceptor genes by real-time PCR, and determined intracellular free Ca2+ concentration ([Ca2+]i]) with Fura-2/AM, intracellular lipid accumulation by oil red O staining. Our aim was to investigate the potential mechanism between calcium signal and preadipocyte differentiation. The results indicated that the paralysors and excitomotors of calcium channel changed the expression level of lipoprotein lipase (LPL), peroxisome proliferators-activated receptor gamma (PPARgamma), fatty acid synthetase (FAS), and the lipid accumulation, markedly. Compared with exocellular Ca2+'s decrease, inhibited intracellular Ca2+'s liberation can promoted preadipocyte differentiation (P < 0.01), and compared with intracellular Ca2+'s increase, promoted exocellular Ca2+'s ingest inhibited preadipocyte differentiation (P < 0.01). SB203580 degraded [Ca2+]i, promoted differentiation marker genes' expression and lipid accumulation in preadipocyte (P < 0.01). But calcium signal didn't have effects to vitamin D receptor (VDR) and extracellular Ca2+-sensing receptor (CaSR)'s expression. It indicated that calcium signal may effect preadipocyte different and lipid accumulation by p38 MAPK pathway.
		                        		
		                        		
		                        		
		                        			Adipocytes
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Calcium
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Calcium Signaling
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Imidazoles
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Lipids
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Pyridines
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			p38 Mitogen-Activated Protein Kinases
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail