1.Research advances in relationship between mitochondrial dynamics and cellular energy metabolism and exercise intervention.
Acta Physiologica Sinica 2019;71(4):625-636
Mitochondrial dynamics, involving mitochondrial fusion, fission and autophagy, plays an important role in maintaining cellular physiological function and homeostasis. Mitochondria are the "energy plant" of human body, so the changes of mitochondrial fusion, division and autophagy are important for cell respiration and energy production. On the other hand, energy metabolism influences mitochondrial dynamics in turn. This paper reviewed the recent advances in studies on the relationship between energy metabolism and the proteins regulating mitochondrial fusion, fission and autophagy. The association of mitochondrial dynamics with electron chain complex expression, oxidative phosphorylation and ATP synthesis upon exercise intervention will provide theoretical references for the further studies in sports training and disease intervention.
Adenosine Triphosphate
;
biosynthesis
;
Autophagy
;
Energy Metabolism
;
Exercise
;
Humans
;
Mitochondria
;
physiology
;
Mitochondrial Dynamics
;
Mitochondrial Proteins
;
metabolism
2.Effects of electroacupuncture with manifestation-root acupoint combination on ultrastructure and biosynthesis in mitochondrial of quadriceps femoris in rats with insulin resistance.
Qiang LI ; Fen XU ; Feng-Xia LIANG ; Rui CHEN ; Song WU ; Jian-Min LIU ; Liu YANG ; Fei MIN ; Jin-Tian YE
Chinese Acupuncture & Moxibustion 2014;34(6):578-582
OBJECTIVETo explore the mechanism of electroacupuncture on improving insulin resistance of rat from aspects of morphology and function of mitochondrial in quadriceps femoris.
METHODSForty-eight 8-week Wistar rats (female and male in half) were randomly divided into a normal group (16 rats, group A), a model control group (16 rats, group B), a model plus electroacupuncture (EA) group (8 rats, group C) and a model plus sham acupoint EA group (8 rats, group D). Group A was given with basic diet while high-fat diet was applied in the group B, group C and group D for 8 weeks to establish model of insulin resistance. After the model establishment, "Guanyuan" (CV 4), "Zhongwan" (CV 12), "Zusanli" (ST 36) and "Fenglong" (ST 30) were selected according to acupoint combination of manifestation-root in the group C, while four points in non-meridian area where 1 to 2 mm next to the acupoints used in group C were selected in the group D. The treatment was given 15 min per time with 1 mA of intensity and 2 Hz in frequency, 5 times per week for totally 8 weeks. The transmission electron microscope was adopted to observe mitochondria structure, and chemical colorimetry was used to test the activity of adenosine triphosphate (ATP) synthase and phosphomolybdic acid colorimetry was applied to measure the content of ATP.
RESULTSAfter the treatment, the body mass was (401.63 +/- 109.81) g in the group B, which was significantly higher than (305.88 +/- 62.72) g in the group A (P < 0.05); morphological structure of mitochondrion was damaged, showing swelling and deformation; the activity of ATP synthase was decreased (P < 0.05) and the content of ATP in tissue of quadriceps femoris was also obviously lowered (P < 0.05). The body mass was (294.13 +/- 53.78) g in the group C, which was significantly lower than that in the group B (P < 0.05); the damaged mitochondrion was restored and merged among each other; the activity of ATP synthase was increased (P < 0.05); the content of ATP in tissue of quadriceps femoris was obviously lifted (P < 0.05). The results in group D were not different from those in group B.
CONCLUSIONThe electroacupuncture with manifestation-root acupoint combination could improve the recovery of damaged structure of mitochondrion and promote the merge among each other, which could enhance oxidizing capacity, lower body mass and improve synthetic rate of ATP.
Acupuncture Points ; Adenosine Triphosphate ; biosynthesis ; Animals ; Diabetes Mellitus, Type 2 ; metabolism ; therapy ; Electroacupuncture ; Female ; Humans ; Insulin ; metabolism ; Insulin Resistance ; Male ; Mitochondria ; enzymology ; metabolism ; ultrastructure ; Mitochondrial Proton-Translocating ATPases ; metabolism ; Quadriceps Muscle ; metabolism ; ultrastructure ; Rats ; Rats, Wistar
3.Structural and biochemical studies of RIG-I antiviral signaling.
Miao FENG ; Zhanyu DING ; Liang XU ; Liangliang KONG ; Wenjia WANG ; Shi JIAO ; Zhubing SHI ; Mark I GREENE ; Yao CONG ; Zhaocai ZHOU
Protein & Cell 2013;4(2):142-154
Retinoic acid-inducible gene I (RIG-I) is an important pattern recognition receptor that detects viral RNA and triggers the production of type-I interferons through the downstream adaptor MAVS (also called IPS-1, CARDIF, or VISA). A series of structural studies have elaborated some of the mechanisms of dsRNA recognition and activation of RIG-I. Recent studies have proposed that K63-linked ubiquitination of, or unanchored K63-linked polyubiquitin binding to RIG-I positively regulates MAVS-mediated antiviral signaling. Conversely phosphorylation of RIG-I appears to play an inhibitory role in controlling RIG-I antiviral signal transduction. Here we performed a combined structural and biochemical study to further define the regulatory features of RIG-I signaling. ATP and dsRNA binding triggered dimerization of RIG-I with conformational rearrangements of the tandem CARD domains. Full length RIG-I appeared to form a complex with dsRNA in a 2:2 molar ratio. Compared with the previously reported crystal structures of RIG-I in inactive state, our electron microscopic structure of full length RIG-I in complex with blunt-ended dsRNA, for the first time, revealed an exposed active conformation of the CARD domains. Moreover, we found that purified recombinant RIG-I proteins could bind to the CARD domain of MAVS independently of dsRNA, while S8E and T170E phosphorylation-mimicking mutants of RIG-I were defective in binding E3 ligase TRIM25, unanchored K63-linked polyubiquitin, and MAVS regardless of dsRNA. These findings suggested that phosphorylation of RIG inhibited downstream signaling by impairing RIG-I binding with polyubiquitin and its interaction with MAVS.
Adaptor Proteins, Signal Transducing
;
metabolism
;
Adenosine Triphosphate
;
metabolism
;
DEAD Box Protein 58
;
DEAD-box RNA Helicases
;
chemistry
;
genetics
;
metabolism
;
Dimerization
;
Humans
;
Mutagenesis, Site-Directed
;
Phosphorylation
;
Polyubiquitin
;
metabolism
;
Protein Binding
;
Protein Structure, Tertiary
;
RNA, Double-Stranded
;
metabolism
;
Recombinant Proteins
;
biosynthesis
;
chemistry
;
genetics
;
Signal Transduction
;
Transcription Factors
;
metabolism
;
Tripartite Motif Proteins
;
Ubiquitin-Protein Ligases
;
metabolism
;
Ubiquitination
4.Effect of pinocembrin on brain mitochondrial respiratory function.
Li-Li SHI ; Gui-Fen QIANG ; Mei GAO ; Heng-Ai ZHANG ; Bai-Nian CHEN ; Xiao-Yan YU ; Zhao-Hong XUAN ; Qiao-Yun WANG ; Guan-Hua DU
Acta Pharmaceutica Sinica 2011;46(6):642-649
There are growing evidences that pinocembrin has better neuroprotective effect. In the present study, the effect of pinocembrin on mitochondrial respiratory function was evaluated in global brain ischemia/ reperfusion (4-vessel occlusion, 4-VO) rats. The results showed that pinocembrin improved the respiratory activity of 4-VO brain mitochondria, through increasing ADP/O, state 3 respiration state (V3), respiration control rate index (RCI) and oxidative phosphorylation rate (OPR). And then, the effect of pinocembrin on brain mitochondria was verified in vitro. The results showed that pinocembrin increased ADP/O, state 3 respiration state, respiration control rate index, oxidative phosphorylation rate in NADH/FADH2 dependent respiratory chain and decreased state 4 respiration state (V4) in NADH dependent respiratory chain. Pinocembrin improved ATP content in brain mitochondria in vitro and in SH-SY5Y cells.
Adenosine Diphosphate
;
metabolism
;
Adenosine Triphosphate
;
biosynthesis
;
Animals
;
Brain Ischemia
;
pathology
;
physiopathology
;
Cell Line, Tumor
;
Cell Respiration
;
drug effects
;
Flavanones
;
pharmacology
;
Hippocampus
;
pathology
;
Male
;
Mitochondria
;
drug effects
;
physiology
;
Neuroblastoma
;
metabolism
;
pathology
;
Neurons
;
drug effects
;
Neuroprotective Agents
;
pharmacology
;
Oxygen
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
5.Morphine treatment enhances extracellular ATP enzymolysis and adenosine generation in rat astrocytes.
Wei LIU ; Zhan-li YANG ; Le-quan ZHOU ; Xiao-ying LI ; Fu-man YAN ; Li GUAN ; Hai-mei LIU ; Jian-qiang FENG
Acta Physiologica Sinica 2011;63(1):20-24
Recent studies have shown that astrocytes play important roles in ATP degradation and adenosine (a well known analgesic molecule) generation, which are closely related to pain signaling pathway. The aim of this study was to investigate whether morphine, a well known analgesic drug, could affect the speeds of ATP enzymolysis and adenosine generation in rat astrocytes. Intracellular calcium concentration ([Ca(2+)](i)) of astrocyte was measured by flow cytometry, and the time points that morphine exerted notable effects were determined for subsequent experiments. Cultured astrocytes were pre-incubated with morphine (1 μmol/L) and then were incubated with substrates, ATP and AMP, for 30 min. The speeds of ATP enzymolysis and adenosine generation were measured by high performance liquid chromatography (HPLC). The results showed that both 1.5 and 48 h of morphine pre-incubation induced maximal ATP enzymolysis speed in astrocytes among all the time points, and there was no statistical difference of ATP enzymolysis speed between morphine treatments for 1.5 and 48 h. As to adenosine, morphine pre-incubation for 1.5 h statistically increased adenosine generation, which was degraded from AMP, in cultured astrocytes compared with control group. However, no difference of adenosine generation was observed after 48 h of morphine pre-incubation. These results indicate that treatment of morphine in vitro dynamically changes the concentrations of ATP and adenosine in extracellular milieu of astrocytic cells. In addition, astrocyte can be regarded as at least one of the target cells of morphine to induce changes of ATP and adenosine levels in central nervous system.
Adenosine
;
biosynthesis
;
Adenosine Triphosphate
;
metabolism
;
Analgesics, Opioid
;
pharmacology
;
Animals
;
Animals, Newborn
;
Astrocytes
;
cytology
;
drug effects
;
metabolism
;
Calcium
;
analysis
;
metabolism
;
Cells, Cultured
;
Cerebral Cortex
;
cytology
;
Morphine
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
6.Carbon metabolism and energetic utilization of Synechococcus sp. PCC7942 under mixotrophic condition.
Riming YAN ; Zhibin ZHANG ; Qinggui ZENG ; Zhu DU ; Ju CHU
Chinese Journal of Biotechnology 2010;26(9):1239-1248
To investigate the energy utilization efficiency of Synechococcus sp. PCC7942 under mixotrophic conditions, we studied its growth characteristics in mixotrophic cultures with glucose and acetic acid respectively and discussed the carbon metabolism and energy utilization based on metabolic flux analysis. Results showed that both glucose and acetate could better enhance the growth of Synechococcus sp. PCC7942, and the latter was more effective. The metabolic flux through glycolytic pathway in mixotrophic cultures was stimulated by glucose whereas depressed by acetate, while the flux through the tricarboxylic acid cycle increased in both cases. Under mixotrophic conditions, glucose makes more significant impact on the diminishment of photochemical efficiency of Synechococcus sp. PCC7942. Although the contribution of light energy was smaller, the cell yields based on total energy in mixotrophic cultures were higher comparing with photoautotrophic culture. The energy conversion efficiencies based on ATP synthesis in photoautotrophic culture, mixotrophic cultures with glucose and with acetate were evaluated to be 6.81%, 7.43% and 8.77%, respectively.
Acetic Acid
;
pharmacology
;
Adenosine Triphosphate
;
biosynthesis
;
Carbon
;
metabolism
;
Culture Media
;
Culture Techniques
;
methods
;
Energy Metabolism
;
Glucose
;
pharmacology
;
Synechococcus
;
classification
;
growth & development
;
metabolism
7.Optimization of high-cell-density fermentation process for S-adenosyl-L-methionine production.
Jiepeng WANG ; Jinjun HAN ; Xiaonan LI ; Peiyi LIU ; Tianwei TAN
Chinese Journal of Biotechnology 2009;25(4):533-536
Poor stability existed in the anaphase of the high-cell-density fermentation of Saccharomyces crevisiae for S-adenosyl-L-methionine (SAM) production in 5 L fermentor. To improve the fermentation stability, we studied the addition of diammonium hydrogen phosphate, sodium glutamate and adenosine disodium triphosphate into glucose feeding solution. Study of four fed-batch cultures showed that, after 34 h fermentation, when dry cell weight reached 100 g/L, the addition of 50 g pre-L-methionine and glucose feeding with 10 g/L adenosine disodium triphosphate was optimal for SAM production. Under this condition, after 65.7 h fermentation, both the dry cell weight and the yield of SAM reached the maximum, 180 g/L and 17.1 g/L respectively.
Adenosine Triphosphate
;
pharmacology
;
Fermentation
;
Phosphates
;
pharmacology
;
S-Adenosylmethionine
;
biosynthesis
;
genetics
;
Saccharomyces cerevisiae
;
enzymology
;
genetics
;
Sodium Glutamate
;
pharmacology
8.Cross talk between P2 purinergic receptors modulates extracellular ATP-mediated interleukin-10 production in rat microglial cells.
Dong Reoyl SEO ; Soo Yoon KIM ; Kyung You KIM ; Hwan Goo LEE ; Ju Hyun MOON ; Jae Souk LEE ; Se Hoon LEE ; Seung U KIM ; Yong Beom LEE
Experimental & Molecular Medicine 2008;40(1):19-26
Previously we demonstrated that ATP released from LPS-activated microglia induced IL-10 expression in a process involving P2 receptors, in an autocrine fashion. Therefore, in the present study we sought to determine which subtype of P2 receptor was responsible for the modulation of IL-10 expression in ATP-stimulated microglia. We found that the patterns of IL-10 production were dose-dependent (1, 10, 100, 1,000 micrometer) and bell-shaped. The concentrations of ATP, ATP-gammaS, ADP, and ADP-beta S that showed maximal IL-10 release were 100, 10, 100, and 100 micrometer respectively. The rank order of agonist potency for IL-10 production was 2'-3'-O-(4-benzoyl)-benzoyl ATP (BzATP) = dATP > 2-methylthio-ADP (2-meSADP). On the other hand, 2-methylthio-ATP (2-meSATP), alpha,beta-methylene ATP (alpha,beta-meATP), UTP, and UDP did not induce the release of IL-10 from microglia. Further, we obtained evidence of crosstalk between P2 receptors, in a situation where intracellular Ca2+ release and/or cAMP-activated PKA were the main contributors to extracellular ATP-(or ADP)-mediated IL-10 expression, and IL-10 production was down- regulated by either MRS2179 (a P2Y1 antagonist) or 5'-AMPS (a P2Y11 antagonist), indicating that both the P2Y1 and P2Y11 receptors are major receptors involved in IL-10 expression. In addition, we found that inhibition of IL-10 production by high concentrations of ATP-gammaS (100 micrometer) was restored by TNP-ATP (an antagonist of the P2X1, P2X3, and P2X4 receptors), and that IL-10 production by 2-meSADP was restored by 2meSAMP (a P2Y12 receptor antagonist) or pertusis toxin (PTX; a Gi protein inhibitor), indicating that the P2X1, P2X3, P2X4 receptor group, or the P2Y12 receptor, negatively modulate the P2Y11 receptor or the P2Y1 receptor, respectively.
Adenosine Diphosphate/analogs & derivatives/pharmacology
;
Adenosine Triphosphate/analogs & derivatives/*pharmacology
;
Adenylate Cyclase/antagonists & inhibitors
;
Animals
;
Calcium/metabolism
;
Chelating Agents/pharmacology
;
Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors
;
Enzyme Inhibitors/pharmacology
;
Extracellular Space/drug effects/*metabolism
;
Gene Expression Regulation/drug effects
;
Interleukin-10/*biosynthesis
;
Microglia/*drug effects/enzymology/*metabolism
;
RNA, Messenger/genetics/metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Receptor Cross-Talk/*drug effects
;
Receptors, Purinergic P2/agonists/antagonists & inhibitors/genetics/*metabolism
;
Thionucleotides/pharmacology
9.Bax is involved in K ATP-mediated protection of the hippocampal neurons against hypoxic exposure.
Wen-jun LI ; Yuan XIA ; Fei ZOU
Journal of Southern Medical University 2008;28(8):1339-1341
OBJECTIVETo investigate the mechanism of K(ATP)-mediated protection of the hippocampal neurons exposed to hypoxia.
METHODSThe neurons were exposed to hypoxia (0% O(2), 5% CO(2) and 95% N(2)) or treated with tolbutamide or diazoxide for 12 or 24 h 1 week after seeding. MTT assay was used to measure the cell viability. RT-PCR was performed to detect Bax mRNA expression.
RESULTSMTT assay showed a much lower survival rate (75.7-/+2.8%) of the neurons exposed to severe hypoxia (PO(2)=0 mmHg) than that of the neurons in normoxia (P<0.01, n=7). Tolbutamide (100 micromol/L) treatment significantly reduced the survival rate of the neurons to (55.7-/+2.5)%, while diazoxide (100 micromol/L) increased the survival rate to 81.1-/+2.4)% (P<0.01, n=6). In normoxia, neither diazoxide nor tolbutamide significantly affected the cell viability (P>0.05, n=6). A significant increase in Bax (P<0.01) and Fas (P<0.01) mRNA expression occurred in the neurons exposed to severe hypoxia (PO(2)=0 mmHg) as compared with the expressions in cells in normoxia (PO(2)=144 mmHg). In the hypoxic neurons, tolbutamide significantly increased Bax mRNA expression(P<0.05), while diazoxide reduced the expression to a level comparable with that observed in normoxic condition. CONCLUSION Bax is involved in KATP-mediated protection of hippocampal neurons exposed to hypoxia.
Adenosine Triphosphate ; metabolism ; Animals ; Animals, Newborn ; Cell Hypoxia ; Cells, Cultured ; Hippocampus ; cytology ; metabolism ; Immunohistochemistry ; Neurons ; cytology ; metabolism ; Potassium Channels ; metabolism ; RNA, Messenger ; biosynthesis ; genetics ; Rats ; Rats, Sprague-Dawley ; Reverse Transcriptase Polymerase Chain Reaction ; bcl-2-Associated X Protein ; biosynthesis ; genetics
10.Secretion of adenylate kinase 1 is required for extracellular ATP synthesis in C2C12 myotubes.
Hyo Jung CHOO ; Bong Woo KIM ; Oh Bong KWON ; Chang Seok LEE ; Jong Soon CHOI ; Young Gyu KO
Experimental & Molecular Medicine 2008;40(2):220-228
Extracellular ATP (exATP) has been known to be a critical ligand regulating skeletal muscle differentiation and contractibility. ExATP synthesis was greatly increased with the high level of adenylate kinase 1 (AK1) and ATP synthase beta during C2C12 myogenesis. The exATP synthesis was abolished by the knock-down of AK1 but not by that of ATP synthase beta in C2C12 myotubes, suggesting that AK1 is required for exATP synthesis in myotubes. However, membrane-bound AK1beta was not involved in exATP synthesis because its expression level was decreased during myogenesis in spite of its localization in the lipid rafts that contain various kinds of receptors and mediate cell signal transduction, cell migration, and differentiation. Interestingly, cytoplasmic AK1 was secreted from C2C12 myotubes but not from C2C12 myoblasts. Taken together all these data, we can conclude that AK1 secretion is required for the exATP generation in myotubes.
Adenosine Triphosphate/*biosynthesis
;
Adenylate Kinase/*metabolism
;
Animals
;
Cell Line
;
Extracellular Space/metabolism
;
Isoenzymes/*metabolism
;
Mice
;
Muscles/cytology/*metabolism

Result Analysis
Print
Save
E-mail