1.Recent advances in poly phosphate kinase (PPK) and the construction of PPK-mediated ATP regeneration system.
Feng CHENG ; Huan LI ; Kexin LI ; Haiyun LIU ; Qi SHEN ; Yaping XUE ; Yuguo ZHENG
Chinese Journal of Biotechnology 2023;39(11):4413-4427
Adenosine triphosphate (ATP) regeneration systems are essential for efficient biocatalytic phosphoryl transfer reactions. Polyphosphate kinase (PPK) is a versatile enzyme that can transfer phosphate groups among adenosine monophosphate (AMP), adenosine diphosphate (ADP), ATP, and polyphosphate (Poly P). Utilization of PPK is an attractive solution to address the problem of ATP regeneration due to its ability to use a variety of inexpensive and stable Poly P salts as phosphate group donors. This review comprehensively summarizes the structural characteristics and catalytic mechanisms of different types of PPKs, as well as the variations in enzyme activity, catalytic efficiency, stability, and coenzyme preference observed in PPKs from different sources. Moreover, recent advances in PPK-mediated ATP regeneration systems and protein engineering of wild-type PPK are summarized.
Adenosine Triphosphate/metabolism*
;
Adenosine Monophosphate
;
Polyphosphates/metabolism*
;
Catalysis
;
Regeneration
3.Kindlin-2 regulates endometrium development via mTOR and Hippo signaling pathways in mice.
Jing ZHANG ; Jia Gui SONG ; Zhen Bin WANG ; Yu Qing GONG ; Tian Zhuo WANG ; Jin Yu ZHOU ; Jun ZHAN ; Hong Quan ZHANG
Journal of Peking University(Health Sciences) 2022;54(5):846-852
OBJECTIVE:
To investigate the effects and mechanisms of Kindlin-2 on uterus development and reproductive capacity in female mice.
METHODS:
Cdh16-Cre tool mice and Kindlin-2flox/flox mice were used to construct the mouse model of uterus specific knockout of Kindlin-2, and the effects of Kindlin-2 deletion on uterine development and reproduction capacity of female mice were observed. High expression and knockdown of Kindlin-2 in endometrial cancer cell lines HEC-1 and Ish were used to detect the regulation of mammalian target of rapamycin (mTOR) signaling pathway. In addition, uterine proteins of the female mice with specific knockout of Kindlin-2 and female mice in the control group were extracted to detect the protein levels of key molecules of mTOR signaling pathway and Hippo signaling pathway.
RESULTS:
The mouse model of uterine specific knockout of Kindlin-2 was successfully constructed. The knockout efficiency of Kindlin-2 in mouse uterus was identified and verified by mouse tail polymerase chain reaction (PCR), Western blot protein identification, immunohistochemical staining (IHC) and other methods. Compared with the control group, the female mice with uterus specific deletion of Kindlin-2 lost weight, seriously impaired reproductive ability, and the number of newborn mice decreased, but the proportion of the female mice and male mice in the newborn mice did not change. Hematoxylin eosin staining (HE) experiment showed that the endometrium of Kindlin-2 knockout group was incomplete and the thickness of uterine wall became thinner. In terms of mechanism, the deletion of Kindlin-2 in endo-metrial cancer cell lines HEC-1 and Ish could downregulate the protein levels of mTOR, phosphorylated mTOR, adenosine monophosphate-activated protein kinase (AMPK), phosphorylated AMPK and phosphorylated ribosomal protein S6 (S6), and the mTOR signal pathway was inhibited. It was found that the specific deletion of Kindlin-2 could upregulate the protein levels of Mps one binding 1 (MOB1) and phosphorylated Yes-associated protein (YAP) in the uterus of the female mice, and the Hippo signal pathway was activated.
CONCLUSION
Kindlin-2 inhibits the development of uterus by inhibiting mTOR signal pathway and activating Hippo signal pathway, thereby inhibiting the fertility of female mice.
AMP-Activated Protein Kinases/metabolism*
;
Adenosine Monophosphate/metabolism*
;
Animals
;
Cadherins/metabolism*
;
Cytoskeletal Proteins/metabolism*
;
Endometrium/metabolism*
;
Eosine Yellowish-(YS)/metabolism*
;
Female
;
Hematoxylin/metabolism*
;
Hippo Signaling Pathway
;
Male
;
Mammals/metabolism*
;
Mice
;
Muscle Proteins
;
Ribosomal Protein S6/metabolism*
;
Sirolimus/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
YAP-Signaling Proteins
4.Development of an APRT-deficient CHO cell line and its ability of expressing recombinant protein.
Yingying FENG ; Mengke XIAO ; Jiangtao LU ; Xiaoyin WANG ; Yurong CHAI ; Tianyun WANG ; Yanlong JIA
Chinese Journal of Biotechnology 2022;38(9):3453-3465
Chinese hamster ovary (CHO) cells are the preferred host cells for the production of complex recombinant therapeutic proteins. Adenine phosphoribosyltransferase (APRT) is a key enzyme in the purine biosynthesis step that catalyzes the condensation of adenine with phosphoribosylate to form adenosine phosphate AMP. In this study, the gene editing technique was used to knock out the aprt gene in CHO cells. Subsequently, the biological properties of APRT-KO CHO cell lines were investigated. A control vector expressed an enhanced green fluorescent protein (EGFP) and an attenuation vector (containing an aprt-attenuated expression cassette and EGFP) were constructed and transfected into APRT-deficient and wild-type CHO cells, respectively. The stable transfected cell pools were subcultured for 60 generations and the mean fluorescence intensity of EGFP in the recombinant CHO cells was detected by flow cytometry to analyze the EGFP expression stability. PCR amplification and sequencing showed that the aprt gene in CHO cell was successfully knocked out. The obtained APRT-deficient CHO cell line had no significant difference from the wild-type CHO cells in terms of cell morphology, growth, proliferation, and doubling time. The transient expression results indicated that compared with the wild-type CHO cells, the expression of EGFP in the APRT-deficient CHO cells transfected with the control vector and the attenuation vector increased by 42%±6% and 56%±9%, respectively. Especially, the EGFP expression levels in APRT-deficient cells transfected with the attenuation vector were significantly higher than those in wild-type CHO cells (P < 0.05). The findings suggest that the APRT-deficient CHO cell line can significantly improve the long-term expression stability of recombinant proteins. This may provide an effective cell engineering strategy for establishing an efficient and stable CHO cell expression system.
Adenine/metabolism*
;
Adenine Nucleotides
;
Adenine Phosphoribosyltransferase/genetics*
;
Adenosine Monophosphate
;
Animals
;
CHO Cells
;
Cricetinae
;
Cricetulus
;
Recombinant Proteins/genetics*
5.Research progress of cyclic adenosine monophosphate in mammalian follicular development.
Acta Physiologica Sinica 2021;73(3):518-526
Cyclic adenosine monophosphate (cAMP) is one of the significant and conserved second messengers in mammals, and it participates in regulating the developmental and physiological functions of various organs and tissues through transducting extracellular signals. Studies have shown that the process of meiosis in female mammalian oocytes is closely related to the level of cAMP and strictly regulated. In oocytes, cAMP is mainly synthesized by adenylate cyclase 3 (AC3) and degraded by phosphodiesterase 3A (PDE3A), both of which jointly regulate the level of cAMP in oocytes and play important roles in the follicular development and oogenesis of female ovaries. It has been well illuminated that high level of cAMP in the cytoplasm of oocytes in growing follicles could maintain the arrest of the first meiotic of oocytes for a long time. The oocytes will resume meiosis and mature either when the synthesis of cAMP is down-regulated, or when cAMP is degraded by PDE3A. In recent years, the novo physiological functions of cAMP in oogenesis have been reported. To better understand the regulatory role and mechanism of cAMP in mammalian gametogenesis, this paper reviews the relevant research regarding the relationship between cAMP and germ cell development.
Adenosine Monophosphate
;
Animals
;
Cyclic AMP
;
Female
;
Mammals
;
Meiosis
;
Oocytes
;
Oogenesis
6.Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection.
Rongjuan PEI ; Jianqi FENG ; Yecheng ZHANG ; Hao SUN ; Lian LI ; Xuejie YANG ; Jiangping HE ; Shuqi XIAO ; Jin XIONG ; Ying LIN ; Kun WEN ; Hongwei ZHOU ; Jiekai CHEN ; Zhili RONG ; Xinwen CHEN
Protein & Cell 2021;12(9):717-733
The coronavirus disease 2019 (COVID-19) pandemic is caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is spread primary via respiratory droplets and infects the lungs. Currently widely used cell lines and animals are unable to accurately mimic human physiological conditions because of the abnormal status of cell lines (transformed or cancer cells) and species differences between animals and humans. Organoids are stem cell-derived self-organized three-dimensional culture in vitro and model the physiological conditions of natural organs. Here we showed that SARS-CoV-2 infected and extensively replicated in human embryonic stem cells (hESCs)-derived lung organoids, including airway and alveolar organoids which covered the complete infection and spread route for SARS-CoV-2 within lungs. The infected cells were ciliated, club, and alveolar type 2 (AT2) cells, which were sequentially located from the proximal to the distal airway and terminal alveoli, respectively. Additionally, RNA-seq revealed early cell response to virus infection including an unexpected downregulation of the metabolic processes, especially lipid metabolism, in addition to the well-known upregulation of immune response. Further, Remdesivir and a human neutralizing antibody potently inhibited SARS-CoV-2 replication in lung organoids. Therefore, human lung organoids can serve as a pathophysiological model to investigate the underlying mechanism of SARS-CoV-2 infection and to discover and test therapeutic drugs for COVID-19.
Adenosine Monophosphate/therapeutic use*
;
Alanine/therapeutic use*
;
Alveolar Epithelial Cells/virology*
;
Antibodies, Neutralizing/therapeutic use*
;
COVID-19/virology*
;
Down-Regulation
;
Drug Discovery
;
Human Embryonic Stem Cells/metabolism*
;
Humans
;
Immunity
;
Lipid Metabolism
;
Lung/virology*
;
RNA, Viral/metabolism*
;
SARS-CoV-2/physiology*
;
Virus Replication/drug effects*
7.Anterior thalamic nuclei deep brain stimulation inhibits mossy fiber sprouting via 3',5'-cyclic adenosine monophosphate/protein kinase A signaling pathway in a chronic epileptic monkey model.
Ting-Ting DU ; Ying-Chuan CHEN ; Guan-Yu ZHU ; De-Feng LIU ; Yu-Ye LIU ; Tian-Shuo YUAN ; Xin ZHANG ; Jian-Guo ZHANG
Chinese Medical Journal 2021;134(3):326-333
BACKGROUND:
Anterior thalamic nuclei (ATN) deep brain stimulation (DBS) is an effective method of controlling epilepsy, especially temporal lobe epilepsy. Mossy fiber sprouting (MFS) plays an indispensable role in the pathogenesis and progression of epilepsy, but the effect of ATN-DBS on MFS in the chronic stage of epilepsy and the potential underlying mechanisms are unknown. This study aimed to investigate the effect of ATN-DBS on MFS, as well as potential signaling pathways by a kainic acid (KA)-induced epileptic model.
METHODS:
Twenty-four rhesus monkeys were randomly assigned to control, epilepsy (EP), EP-sham-DBS, and EP-DBS groups. KA was injected to establish the chronic epileptic model. The left ATN was implanted with a DBS lead and stimulated for 8 weeks. Enzyme-linked immunosorbent assay, Western blotting, and immunofluorescence staining were used to evaluate MFS and levels of potential molecular mediators in the hippocampus. One-way analysis of variance, followed by the Tukey post hoc correction, was used to analyze the statistical significance of differences among multiple groups.
RESULTS:
ATN-DBS is found to significantly reduce seizure frequency in the chronic stage of epilepsy. The number of ectopic granule cells was reduced in monkeys that received ATN stimulation (P < 0.0001). Levels of 3',5'-cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) in the hippocampus, together with Akt phosphorylation, were noticeably reduced in monkeys that received ATN stimulation (P = 0.0030 and P = 0.0001, respectively). ATN-DBS also significantly reduced MFS scores in the hippocampal dentate gyrus and CA3 sub-regions (all P < 0.0001).
CONCLUSION
ATN-DBS is shown to down-regulate the cAMP/PKA signaling pathway and Akt phosphorylation and to reduce the number of ectopic granule cells, which may be associated with the reduced MFS in chronic epilepsy. The study provides further insights into the mechanism by which ATN-DBS reduces epileptic seizures.
Adenosine Monophosphate
;
Anterior Thalamic Nuclei
;
Cyclic AMP-Dependent Protein Kinases
;
Deep Brain Stimulation
;
Epilepsy/therapy*
;
Epilepsy, Temporal Lobe/therapy*
;
Hippocampus
;
Humans
;
Mossy Fibers, Hippocampal
;
Signal Transduction
9.Sequential Changes of Total Adenine Nucleotide and Adenylic-Acid Energy Charge in Muscles of Rats after Death.
Wei Hao ZHU ; Zhe ZHENG ; Kai SUN ; Meng Zi YANG ; Mao Sheng QIAN ; Yao Nan MO
Journal of Forensic Medicine 2021;37(1):7-10
Objective To determine the purine adenylate [adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP)] content in the muscles of both hind limbs of rats at different postmortem interval (PMI), calculate the changes in the total adenine nucleotide (TAN) content and the adenylic-acid energy charge (AEC), and explore their relationship with PMI. Methods Healthy rats were sacrificed by cervical dislocation and kept at 20 ℃. The muscles of their hind limbs were extracted at 0, 24, 48, 72, 96, 120, 144, and 168 h after death. Reversed-phase high performance liquid chromatography was used to determine the content of purine adenylates, the TAN and AEC of the muscles of the both hind limbs were calculated, and the related regression equations of their relationship with PMI were established. Results Within 168 h of death of rats, the trend of ATP change was different from ADP, and the content of AMP continuously increased. The TAN value gradually increased with the extension of PMI, and the AEC showed a downward trend within 168 h after death. Among them, the patterns of AEC changes with PMI were obvious, the correlation coefficient was high ( R2=0.903), and the curve fitting relationship was good; the fitting relationship between ATP, ADP, AMP, TAN and PMI was poor ( R2=0.198-0.754). Conclusion The postmortem change patterns of AEC provide new research ideas for PMI estimation in the forensic field.
Adenine Nucleotides
;
Adenosine Monophosphate
;
Animals
;
Forensic Pathology
;
Muscles
;
Rats
;
Rats, Sprague-Dawley
;
Time Factors
10.Mouse-adapted SARS-CoV-2 replicates efficiently in the upper and lower respiratory tract of BALB/c and C57BL/6J mice.
Jinliang WANG ; Lei SHUAI ; Chong WANG ; Renqiang LIU ; Xijun HE ; Xianfeng ZHANG ; Ziruo SUN ; Dan SHAN ; Jinying GE ; Xijun WANG ; Ronghong HUA ; Gongxun ZHONG ; Zhiyuan WEN ; Zhigao BU
Protein & Cell 2020;11(10):776-782
Adaptation, Physiological
;
Adenosine Monophosphate
;
administration & dosage
;
analogs & derivatives
;
pharmacology
;
therapeutic use
;
Administration, Intranasal
;
Alanine
;
administration & dosage
;
analogs & derivatives
;
pharmacology
;
therapeutic use
;
Animals
;
Betacoronavirus
;
genetics
;
physiology
;
Chlorocebus aethiops
;
Coronavirus Infections
;
drug therapy
;
virology
;
Disease Models, Animal
;
Female
;
Host Specificity
;
genetics
;
Lung
;
pathology
;
virology
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Mutation, Missense
;
Nasal Mucosa
;
virology
;
Pandemics
;
Pneumonia, Viral
;
drug therapy
;
virology
;
RNA, Viral
;
administration & dosage
;
genetics
;
Turbinates
;
virology
;
Vero Cells
;
Viral Load
;
Virus Replication

Result Analysis
Print
Save
E-mail