1.Association of gene polymorphisms of MyD88 and TICAM1 and their interactions with community-acquired pneumonia in children.
Yong YANG ; Sui-Yu YANG ; Zong-Bo CHEN ; Li LIU
Chinese Journal of Contemporary Pediatrics 2023;25(8):791-799
OBJECTIVES:
To investigate the association of single nucleotide polymorphisms (SNPs) of myeloid differentiation factor 88 (MyD88) and Toll-like receptor adaptor molecule 1 (TICAM1) and their interactions with community-acquired pneumonia (CAP) in children.
METHODS:
Improved multiple ligase detection reaction assay was used for detecting the polymorphisms of nine tagging SNPs of the MyD88 and TICAM1 genes in 375 children with CAP who attended the Department of Pediatrics of the Second Affiliated Hospital of Yan'an University Medical School from August 2015 to September 2017 and 306 healthy children who underwent physical examination. A logistic regression analysis was used to evaluate the association between the distribution of genotypes and their interactions with CAP in children.
RESULTS:
The polymorphism of the TICAM1 gene at rs11466711T/C locus was closely associated with the susceptibility to CAP in children (P<0.05). The AA genotype of rs35747610G/A locus significantly reduced risk of sepsis in children with CAP (P<0.05). The AA genotype of rs6510826G/A locus was significantly associated with the increase in C-reactive protein level in children with CAP (P<0.05). The GG genotype of the MyD88 gene at rs7744A/G locus significantly increased the risk of respiratory failure and circulatory failure (P<0.05). The multiplicative interactions between MyD88 gene rs7744A/G and TICAM1 gene rs11466711T/C, rs2292151G/A, rs35299700C/T, and rs35747610G/A loci were significantly associated with the susceptibility to CAP, the severity of CAP, and the risk of sepsis in children (P<0.05).
CONCLUSIONS
The gene polymorphisms of MyD88 and TICAM1 and their interactions are closely associated with CAP in children, with a synergistic effect on the development and progression of CAP in children.
Child
;
Humans
;
Adaptor Proteins, Vesicular Transport/genetics*
;
Community-Acquired Infections/genetics*
;
Myeloid Differentiation Factor 88/genetics*
;
Pneumonia/genetics*
;
Polymorphism, Single Nucleotide
;
Sepsis
2.The Expression of RTN1 in Lung Adenocarcinoma and Its Effect on Immune Microenvironment.
Shuai ZHU ; Lingling ZU ; Song XU
Chinese Journal of Lung Cancer 2022;25(6):385-395
BACKGROUND:
Reticulosome family gene 1 (RTN1) is a reticulosome-encoding gene associated with the endoplasmic reticulum. RTN1 plays a key role in membrane trafficking or neuroendocrine secretion of neuroendocrine cells, while RTN1 serves as a potential diagnostic/therapeutic marker for neurological diseases and cancer. However, the expression of RTN1 and its effect on the immune microenvironment in patients with lung adenocarcinoma have not been reported. In this study, we aimed to investigate the expression of RTN1 in lung adenocarcinoma and its correlation with immune infiltration and survival in lung adenocarcinoma using public databases and bioinformatics network tools.
METHODS:
Expression levels of RTN1 mRNA in tumor and normal tissues were analyzed using Tumor Immune Estimation Resource 2.0 (TIMER 2.0) and Gene Expression Profiling Interactive Analysis 2 (GEPIA 2). RTN1 protein expression was examined using the Human Protein Atlas. The clinical prognostic significance of RTN1 was analyzed using the GEPIA2 plotter database. To further confirm the potential function of RTN1, the data were analyzed using gene set enrichment analysis. In addition, We performed dimensionality-reduced clustering analysis at the single-cell sequencing level on two datasets from the Tumor Immune Single-cell Hub (TISCH) database to observe the cellular clustering of RTN1 in different types of immune cells. Using the TIMER online tool to analyze and predict the infiltration abundance of different types of immune cells in the immune microenvironment of lung adenocarcinoma patients in the TCGA cohort; TIMER and CIBERSORT were used to study the relationship between genes co-expressed with RTN1 and its associated tumor-infiltrating immune cells; finally, TIMER was used to analyze the relationship between RTN1 and immune correlations between immune checkpoints.
RESULTS:
We found that RTN1 expression was decreased in patients with lung adenocarcinoma and was closely related to patient prognosis. RTN1 is involved in the process of phagosome formation, hematopoietic cell formation and cell adhesion, and plays an important role in T cell activation. Using cBioPortal and TCGA data to analyze, it is found that RTN1 is significantly associated with BTK, CD4, ECSF1R, MNDA, NCKAP1L and SNX20. High expression of the above genes may cause significant upregulation of CD4+ T cells, mast cells, monocytes, myeloid dendritic cells and M1 macrophages. The expression of RTN1 is closely related to the common immune checkpoints CD274, CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2, TIGIT and SIGLEC15 immune checkpoints.
CONCLUSIONS
RTN1 may act as a tumor suppressor gene and indicate better prognosis. Furthermore, RTN1 is associated with immune infiltration that may be involved in the immunotherapy response in LUAD. However, the related mechanism needs further research.
Adenocarcinoma of Lung/pathology*
;
Biomarkers, Tumor/metabolism*
;
Gene Expression Profiling
;
Humans
;
Lung Neoplasms/pathology*
;
Mast Cells/pathology*
;
Membrane Proteins/metabolism*
;
Nerve Tissue Proteins/genetics*
;
Prognosis
;
Sorting Nexins/metabolism*
;
Tumor Microenvironment/genetics*
3.Effect of activation of Toll-like receptor signaling pathway of peripheral blood mononuclear cell in recombinant hepatitis B surface antigen immune response.
Cong JIN ; Hai Yun HAO ; Wen Xin CHEN ; Ting WANG ; Yan Di LI ; Lin Zhu YI ; Yong Liang FENG ; Su Ping WANG
Chinese Journal of Epidemiology 2022;43(4):560-565
Objective: To explore the effect and mechanism of activation of peripheral blood mononuclear cell (PBMC) Toll-like receptor (TLR3) signaling pathway in recombinant HBsAg (rHBsAg) immune response. Methods: White blood cells were collected from peripheral blood of 13 healthy donors in the preparation of blood products. PBMC was isolated and treated with Poly I:C (Poly I:C group) and PBS (control group) respectively. 48 h later, some cells were collected and the expressions of TLR3 signaling pathway proteins were detected by flow cytometry. After activating (Poly I:C group)/inactivating (control group) TLR3 signaling pathway, rHBsAg was given to both groups for 72 h, and the proportions of DC, T, B cells and their subsets in PBMC were detected by flow cytometry. Paired t-test, paired samples wilcoxon signed-rank test and canonical correlation analyses were used for statistical analysis. Results: The percentage of TLR3 protein-positive cells (19.21%) and protein expression (8 983.95), NF-κB protein expression (26 193.13), the percentage of pNF-κB protein-positive cells (13.73%) and its proportion in NF-κB (16.03%), and the percentage of pIRF3 protein-positive cells (12.64%) and its proportion in IRF3 (21.80%) in Poly I:C group were higher than those in control group (11.54%, 8 086.00, 22 340.66, 8.72%, 9.71%, 9.57%, 19.12%) (P<0.05), and the percentage of TRIF protein-positive cells (89.75%) and protein expression (304 219.54) were higher in Poly I:C group than in the control group (89.64%, 288 149.72) (P>0.05). After PBMC stimulation by rHBsAg, the proportions of mDC (2.90%), pDC (1.80%), B cell (5.31%) and plasma cell (67.71%) in Poly I:C group were significantly higher than those in the control group (1.83%, 0.81%, 4.23%, 58.82%) (P<0.05). Results of canonical correlation analysis showed that the expression of TLR3 protein was positively correlated with the proportions of plasma cells, the expression of pIRF3 protein was positively correlated with the proportions of plasma cells and mDC, and the percentage of pNF-κB protein-positive cells and the percentage of pIRF3 protein-positive cells were positively correlated with the proportion of CD4+T cells. Conclusions: Poly I:C can activate TLR3/TRIF/NF-κB and TLR3/TRIF/IRF3 signaling pathway, promote the function of downstream signaling molecules, and then promote the maturation of DC, induce the immune responses of CD4+T cell, and promote the maturation and activation of B cells and the immune response of rHBsAg.
Adaptor Proteins, Vesicular Transport/pharmacology*
;
Hepatitis B Surface Antigens
;
Humans
;
Immunity
;
Leukocytes, Mononuclear/metabolism*
;
NF-kappa B
;
Poly I-C/pharmacology*
;
Signal Transduction
;
Toll-Like Receptor 3/metabolism*
;
Toll-Like Receptors
4.SNX10 gene mutation in infantile malignant osteopetrosis: A case report and literature review.
Ting ZHOU ; Caixia ZENG ; Qiong XI ; Zuocheng YANG
Journal of Central South University(Medical Sciences) 2021;46(1):108-112
A case of SNX10 gene mutation in a patient with infantile malignant osteopetrosis (IMO) was admitted to Department of Pediatrics, Third Xiangya Hospital, Central South University. The patient had the symptom of anemia, hepatosplenomegaly and growth retardation. The X-ray examination suggested extensive increase of bone density throughout the body, which was clinically diagnosed as IMO. The homozygous mutation of SNX10 gene c.61C>T was found via gene sequencing. We reviewed the relevant literatures and found that anemia, visual and hearing impairment, hepatosplenomegaly are the main clinical symptoms of IMO, SNX10 gene mutation is a rare cause of IMO, and hematopoietic stem cell transplantation is an effective treatment.
Bone Density
;
Child
;
Hematopoietic Stem Cell Transplantation
;
Humans
;
Mutation
;
Osteopetrosis/genetics*
;
Sorting Nexins/genetics*
5.Genetic testing and prenatal diagnosis for two families affected with Joubert syndrome.
Zhouxian BAI ; Shuang HU ; Ning LIU ; Qinghua WU ; Xiangdong KONG
Chinese Journal of Medical Genetics 2020;37(5):509-513
OBJECTIVE:
To identify pathogenic variants in two families with patients suspected for Joubert syndrome(UBST) by cerebellar vermis hypoplasia.
METHODS:
Clinical data and peripheral venous blood and skin tissue samples were collected for the extraction of genomic DNA. Potential variants were screened by using targeted capture and next generation sequencing. Suspected variants were validated by PCR and Sanger sequencing. The frequency of the variants in the population was calculated. Pathogenicity of the variants was predicted by following the guidelines of the American College of Medical Genetics and Genomics (ACMG). Prenatal diagnosis was provided to these families upon subsequent pregnancy.
RESULTS:
The proband of family 1 was found to harbor homozygous c.2072delT (p.F691S*fs19) frameshift variant of the AHI1 gene, which may cause premature termination of translation of the Abelson helper integration site 1 after the 691st amino acid. The proband of family 2 was found to harbor compound heterozygous variants of the CPLANE1 gene, namely c.7243dupA (p.T2415Nfs*7) and c.8001delG (p.K2667Nfs*31), which can respectively lead to premature termination of translation of ciliogenesis and planar polarity effector 1 after the 2145th and 2667th amino acids. All of the three variants were previously unreported, and were predicted to be pathogenic by bioinformatic analysis.
CONCLUSION
The AHI1 c.2072delT and CPLANE1 c.7243dupA and c.8001delG variants probably underlay JBTS3 in family 1 and JBTS17 in family 2, respectively. Based on above results, prenatal diagnosis may be offered to the affected families upon their subsequent pregnancies.
Abnormalities, Multiple
;
diagnosis
;
genetics
;
Adaptor Proteins, Vesicular Transport
;
genetics
;
Cerebellum
;
abnormalities
;
Eye Abnormalities
;
diagnosis
;
genetics
;
Female
;
Genetic Testing
;
Genetic Variation
;
Humans
;
Kidney Diseases, Cystic
;
diagnosis
;
genetics
;
Membrane Proteins
;
genetics
;
Mutation
;
Pregnancy
;
Prenatal Diagnosis
;
Retina
;
abnormalities
6.Cardamine komarovii flower extract reduces lipopolysaccharide-induced acute lung injury by inhibiting MyD88/TRIF signaling pathways.
Qi CHEN ; Ke-Xin ZHANG ; Tai-Yuan LI ; Xuan-Mei PIAO ; Mei-Lan LIAN ; Ren-Bo AN ; Jun JIANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(6):461-468
In the present study, we investigated anti-inflammatory effect of Cardamine komarovii flower (CKF) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). We determined the effect of CKF methanolic extracts on LPS-induced pro-inflammatory mediators NO and prostaglandin E2 (PGE2), production of pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6), and related protein expression levels of MyD88/TRIF signaling pathways in peritoneal macrophages (PMs). Nuclear translocation of NF-κB-p65 was analyzed by immunofluorescence. For the in vivo experiments, an ALI model was established to detect the number of inflammatory cells and inflammatory factors (IL-1β, TNF-α, and IL-6) in bronchoalveolar lavage fluid (BALF) of mice. The pathological damage in lung tissues was evaluated through H&E staining. Our results showed that CKF can decrease the production of inflammatory mediators, such as NO and PGE2, by inhibiting their synthesis-related enzymes iNOS and COX-2 in LPS-induced PMs. In addition, CKF can downregulate the mRNA levels of IL-1β, TNF-α, and IL-6 to inhibit the production of inflammatory factors. Mechanism studies indicated that CKF possesses a fine anti-inflammatory effect by regulating MyD88/TRIF dependent signaling pathways. Immunocytochemistry staining showed that the CKF extract attenuates the LPS-induced translocation of NF-kB p65 subunit in the nucleus from the cytoplasm. In vivo experiments revealed that the number of inflammatory cells and IL-1β in BALF of mice decrease after CKF treatment. Histopathological observation of lung tissues showed that CKF can remarkably improve alveolar clearance and infiltration of interstitial and alveolar cells after LPS stimulation. In conclusion, our results suggest that CKF inhibits LPS-induced inflammatory response by inhibiting the MyD88/TRIF signaling pathways, thereby protecting mice from LPS-induced ALI.
Acute Lung Injury
;
chemically induced
;
drug therapy
;
genetics
;
metabolism
;
Adaptor Proteins, Vesicular Transport
;
genetics
;
metabolism
;
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
chemistry
;
Cardamine
;
chemistry
;
Cyclooxygenase 2
;
genetics
;
metabolism
;
Female
;
Flowers
;
chemistry
;
Humans
;
Lipopolysaccharides
;
adverse effects
;
Male
;
Mice
;
Myeloid Differentiation Factor 88
;
genetics
;
metabolism
;
NF-kappa B
;
genetics
;
metabolism
;
Nitric Oxide Synthase Type II
;
genetics
;
metabolism
;
Plant Extracts
;
administration & dosage
;
chemistry
;
Signal Transduction
;
drug effects
;
Tumor Necrosis Factor-alpha
;
genetics
;
metabolism
7.TRIM56 Suppresses Multiple Myeloma Progression by Activating TLR3/TRIF Signaling
Ying CHEN ; Jing ZHAO ; Dengzhe LI ; Jinxia HAO ; Pengcheng HE ; Huaiyu WANG ; Mei ZHANG
Yonsei Medical Journal 2018;59(1):43-50
PURPOSE: Tripartite-motif-containing protein 56 (TRIM56) has been found to exhibit a broad antiviral activity, depending upon E3 ligase activity. Here, we attempted to evaluate the function of TRIM56 in multiple myeloma (MM) and its underlying molecular basis. MATERIALS AND METHODS: TRIM56 expression at the mRNA and protein level was measured by qRT PCR and western blot analysis. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry analysis was performed to investigate the effect of TRIM56 on MM cell proliferation and apoptosis. The concentrations of interferon (IFN)-β, interleukin (IL)-6, and tumor necrosis factor-α in MM cell culture supernatants were detected with respective commercial ELISA kits. Western blot was employed to determine the effect of TRIM56 on toll-like receptor 3 (TLR3)/toll-IL-1 receptor (TIR) domain-containing adaptor inducing IFN-β (TRIF) signaling pathway. RESULTS: TRIM56 expression was prominently decreased in MM cells. Poly (dA:dT)-induced TRIM56 overexpression in U266 cells suppressed proliferation, induced apoptosis, and enhanced inflammatory cytokine production, while TRIM56 knockdown improved growth, diminished apoptosis, and inhibited inflammatory cytokine secretion in RPMI8226 cells. Moreover, TRIM56 knockdown blocked TLR3 signaling pathway. Furthermore, poly (I:C), a TLR3 agonist, markedly abolished TRIM56 depletion-induced increase of proliferation, decrease of apoptosis, and reduction of inflammatory factor in MM cells. CONCLUSION: TRIM56 may act as a tumor suppressor in MM through activation of TLR3/TRIF signaling pathway, contributing to a better understanding of the molecular mechanism of TRIM56 involvement in MM pathogenesis and providing a promising therapy strategy for patients with MM.
Adaptor Proteins, Vesicular Transport/metabolism
;
Apoptosis/drug effects
;
Cell Line, Tumor
;
Cell Proliferation/drug effects
;
Cytokines/secretion
;
Disease Progression
;
Down-Regulation/drug effects
;
Gene Knockdown Techniques
;
Humans
;
Multiple Myeloma/metabolism
;
Multiple Myeloma/pathology
;
Poly I-C/pharmacology
;
Signal Transduction/drug effects
;
Toll-Like Receptor 3/metabolism
;
Tripartite Motif Proteins/deficiency
;
Tripartite Motif Proteins/metabolism
;
Ubiquitin-Protein Ligases/deficiency
;
Ubiquitin-Protein Ligases/metabolism
8.Hypertonia-linked protein Trak1 functions with mitofusins to promote mitochondrial tethering and fusion.
Crystal A LEE ; Lih-Shen CHIN ; Lian LI
Protein & Cell 2018;9(8):693-716
Hypertonia is a neurological dysfunction associated with a number of central nervous system disorders, including cerebral palsy, Parkinson's disease, dystonia, and epilepsy. Genetic studies have identified a homozygous truncation mutation in Trak1 that causes hypertonia in mice. Moreover, elevated Trak1 protein expression is associated with several types of cancers and variants in Trak1 are linked to childhood absence epilepsy in humans. Despite the importance of Trak1 in health and disease, the mechanisms of Trak1 action remain unclear and the pathogenic effects of Trak1 mutation are unknown. Here we report that Trak1 has a crucial function in regulation of mitochondrial fusion. Depletion of Trak1 inhibits mitochondrial fusion, resulting in mitochondrial fragmentation, whereas overexpression of Trak1 elongates and enlarges mitochondria. Our analyses revealed that Trak1 interacts and colocalizes with mitofusins on the outer mitochondrial membrane and functions with mitofusins to promote mitochondrial tethering and fusion. Furthermore, Trak1 is required for stress-induced mitochondrial hyperfusion and pro-survival response. We found that hypertonia-associated mutation impairs Trak1 mitochondrial localization and its ability to facilitate mitochondrial tethering and fusion. Our findings uncover a novel function of Trak1 as a regulator of mitochondrial fusion and provide evidence linking dysregulated mitochondrial dynamics to hypertonia pathogenesis.
Adaptor Proteins, Vesicular Transport
;
metabolism
;
Animals
;
HeLa Cells
;
Humans
;
Membrane Fusion
;
Mice
;
Mitochondria
;
metabolism
;
Mitochondrial Proteins
;
deficiency
;
metabolism
;
Muscle Proteins
;
deficiency
;
metabolism
;
Tumor Cells, Cultured
9.Molecular mechanisms of androgens regulating the eNOS expression in rat corpus cavernosum.
Guo-Ping XIE ; Ji-Yi XIA ; Jun LIU ; Rui JIANG
National Journal of Andrology 2017;23(1):11-20
Objective:
To investigate whether androgens can regulate the expression of eNOS in rat corpus cavernosum through AKT3, PIK3CA, CALM, and CAV1 and influence erectile function.
METHODS:
Thirty-six 8-week-old male SD rats were randomly divided into groups A (4-week control), B (6-week control), C (4-week castration), D (6-week castration), E (4-week castration + testosterone replacement), and F (6-week castration + testosterone replacement). Both the testis and epididymis were removed from the rats in groups C, D, E and F, and on the second day after surgery, the animals of groups E and F were subcutaneously injected with testosterone propionate at 3 mg per kg of the body weight qd alt while all the others with isodose oil instead. At 4 weeks (for groups A, C and E) and 6 weeks (for groups B, D and F) after treatment, we detected the maximum intracavernous pressure (ICPmax), the mean carotid arterial pressure (MAP) and their ratio (ICPmax/MAP), measured the level of serum testosterone (T), and determined the expressions of eNOS, P-eNOS, AKT3, PIK3CA, CALM and CAV1 in the corpus cavernosum by Western blot and immunohistochemistry.
RESULTS:
No statistically significant differences were observed in the body weight and MAP among different groups. The serum T level and ICPmax/MAP were remarkably lower in groups C and D than in the other four groups (P<0.01) as well as in groups E and F than in A and B (P<0.05) but exhibited no significant differences either between E and F or between A and B. Immunohistochemistry showed that eNOS and P-eNOS were mainly expressed in the vascular endothelial cell membrane and cavernous vascular lumen, while AKT3, PIK3CA, CALM and CAV1 chiefly in the vascular endothelial cell cytoplasm and membrane, with a few in the smooth muscle cells. Western blot analysis manifested that the expressions of eNOS, P-eNOS, AKT3, PIK3CA, CALM and CAV1 were markedly lower in groups C and D than in A, B, E and F (P<0.01) as well as in D than in C (P<0.05) but those in groups E and F did not showed any significant difference from those in A and B, nor E from F or A from B.
CONCLUSIONS
Androgens can improve erectile function by upregulating the expressions of AKT3, PIK3CA, CALM and CAV1 protein molecules and activating eNOS after its phosphorylation, though the exact molecular mechanisms are yet to be further studied.
Animals
;
Blood Pressure
;
Blotting, Western
;
Caveolin 1
;
metabolism
;
Class I Phosphatidylinositol 3-Kinases
;
metabolism
;
Erectile Dysfunction
;
Hormone Replacement Therapy
;
Male
;
Monomeric Clathrin Assembly Proteins
;
metabolism
;
Myocytes, Smooth Muscle
;
Nitric Oxide Synthase Type III
;
metabolism
;
Orchiectomy
;
Penile Erection
;
physiology
;
Penis
;
enzymology
;
metabolism
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Testosterone Propionate
;
administration & dosage
10.Parkin promotes proteasomal degradation of p62: implication of selective vulnerability of neuronal cells in the pathogenesis of Parkinson's disease.
Pingping SONG ; Shanshan LI ; Hao WU ; Ruize GAO ; Guanhua RAO ; Dongmei WANG ; Ziheng CHEN ; Biao MA ; Hongxia WANG ; Nan SUI ; Haiteng DENG ; Zhuohua ZHANG ; Tieshan TANG ; Zheng TAN ; Zehan HAN ; Tieyuan LU ; Yushan ZHU ; Quan CHEN
Protein & Cell 2016;7(2):114-129
Mutations or inactivation of parkin, an E3 ubiquitin ligase, are associated with familial form or sporadic Parkinson's disease (PD), respectively, which manifested with the selective vulnerability of neuronal cells in substantia nigra (SN) and striatum (STR) regions. However, the underlying molecular mechanism linking parkin with the etiology of PD remains elusive. Here we report that p62, a critical regulator for protein quality control, inclusion body formation, selective autophagy and diverse signaling pathways, is a new substrate of parkin. P62 levels were increased in the SN and STR regions, but not in other brain regions in parkin knockout mice. Parkin directly interacts with and ubiquitinates p62 at the K13 to promote proteasomal degradation of p62 even in the absence of ATG5. Pathogenic mutations, knockdown of parkin or mutation of p62 at K13 prevented the degradation of p62. We further showed that parkin deficiency mice have pronounced loss of tyrosine hydroxylase positive neurons and have worse performance in motor test when treated with 6-hydroxydopamine hydrochloride in aged mice. These results suggest that, in addition to their critical role in regulating autophagy, p62 are subjected to parkin mediated proteasomal degradation and implicate that the dysregulation of parkin/p62 axis may involve in the selective vulnerability of neuronal cells during the onset of PD pathogenesis.
Adaptor Proteins, Signal Transducing
;
chemistry
;
metabolism
;
Animals
;
HEK293 Cells
;
Heat-Shock Proteins
;
chemistry
;
metabolism
;
Humans
;
Lysine
;
metabolism
;
Mice
;
Neurons
;
metabolism
;
pathology
;
Oxidopamine
;
pharmacology
;
Parkinson Disease
;
metabolism
;
pathology
;
Proteasome Endopeptidase Complex
;
metabolism
;
Protein Stability
;
Proteolysis
;
drug effects
;
Sequestosome-1 Protein
;
Ubiquitin-Protein Ligases
;
metabolism
;
Ubiquitination
;
drug effects

Result Analysis
Print
Save
E-mail