1.Neural Integration of Audiovisual Sensory Inputs in Macaque Amygdala and Adjacent Regions.
Liang SHAN ; Liu YUAN ; Bo ZHANG ; Jian MA ; Xiao XU ; Fei GU ; Yi JIANG ; Ji DAI
Neuroscience Bulletin 2023;39(12):1749-1761
Integrating multisensory inputs to generate accurate perception and guide behavior is among the most critical functions of the brain. Subcortical regions such as the amygdala are involved in sensory processing including vision and audition, yet their roles in multisensory integration remain unclear. In this study, we systematically investigated the function of neurons in the amygdala and adjacent regions in integrating audiovisual sensory inputs using a semi-chronic multi-electrode array and multiple combinations of audiovisual stimuli. From a sample of 332 neurons, we showed the diverse response patterns to audiovisual stimuli and the neural characteristics of bimodal over unimodal modulation, which could be classified into four types with differentiated regional origins. Using the hierarchical clustering method, neurons were further clustered into five groups and associated with different integrating functions and sub-regions. Finally, regions distinguishing congruent and incongruent bimodal sensory inputs were identified. Overall, visual processing dominates audiovisual integration in the amygdala and adjacent regions. Our findings shed new light on the neural mechanisms of multisensory integration in the primate brain.
Animals
;
Macaca
;
Acoustic Stimulation
;
Auditory Perception/physiology*
;
Visual Perception/physiology*
;
Amygdala/physiology*
;
Photic Stimulation
2.Corticostriatal Neurons in the Anterior Auditory Field Regulate Frequency Discrimination Behavior.
Zhao-Qun WANG ; Hui-Zhong WEN ; Tian-Tian LUO ; Peng-Hui CHEN ; Yan-Dong ZHAO ; Guang-Yan WU ; Ying XIONG
Neuroscience Bulletin 2023;39(6):962-972
The anterior auditory field (AAF) is a core region of the auditory cortex and plays a vital role in discrimination tasks. However, the role of the AAF corticostriatal neurons in frequency discrimination remains unclear. Here, we used c-Fos staining, fiber photometry recording, and pharmacogenetic manipulation to investigate the function of the AAF corticostriatal neurons in a frequency discrimination task. c-Fos staining and fiber photometry recording revealed that the activity of AAF pyramidal neurons was significantly elevated during the frequency discrimination task. Pharmacogenetic inhibition of AAF pyramidal neurons significantly impaired frequency discrimination. In addition, histological results revealed that AAF pyramidal neurons send strong projections to the striatum. Moreover, pharmacogenetic suppression of the striatal projections from pyramidal neurons in the AAF significantly disrupted the frequency discrimination. Collectively, our findings show that AAF pyramidal neurons, particularly the AAF-striatum projections, play a crucial role in frequency discrimination behavior.
Acoustic Stimulation/methods*
;
Neurons/physiology*
;
Auditory Cortex/physiology*
;
Auditory Perception
;
Pyramidal Cells
3.The function of auditory cortex in the elderly using functional near-infrared spectroscopy technology.
Liu YANG ; You Nuo CHEN ; Song Jian WANG ; Yuan WANG ; Ting CHEN ; Ying LIANG ; Shuo WANG
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2022;57(4):458-466
Objective: Functional near-infrared spectroscopy (fNIRS) was used to study the effect of aging on the neuroimaging characteristics of cerebral cortex in the process of speech perception. Method: Thirty-four adults with normal hearing were recruited from March 2021 to June 2021, including 17 in the young group, with 6 males, 11 females, age (32.1±5.0) years, age range 20-39 years. and 17 in the elderly group, with 6 males, 11 females, age (63.2±2.8) years, age range 60-70 years. The test material was the sentence table of the Mandarin Hearing Test in Noise (MHINT). The task state block experiment design was adopted, and the temporal lobe, Broca's area, Wernicke's area, motor cortex were used as regions of interest. Objective brain imaging technology (fNIRS) combined with subjective psychophysical testing method was used to analyze the activation area and degree of cerebral cortex related to auditory speech perception in the elderly and young people under different listening conditions (quiet, signal-to-noise ratio of 10 dB, 5 dB, 0 dB, -5 dB). SPSS 23 software was used for statistical analysis. Result: The activation area and degree of activation in the elderly group were lower than those in the young group under each task condition; The number of activation channels in the young group were significantly more than those in the old group, and the number of activation channels in the left hemisphere were more than those in the right hemisphere, but there was no difference in the number of activation channels. There were more channels affected by age in the left hemisphere than in the right hemisphere. The activation degree of the young group when the signal-to-noise ratio was 0 dB was significantly higher than that of other signal-to-noise ratio conditions (P<0.05), but there was no significant difference in the old group under the five conditions (P>0.05). The speech recognition score of the young group was higher than that of the old group under all conditions. When the quiet and signal-to-noise ratio was 10 dB, the correct score of the two groups was equal or close to 100%. With the gradual decrease of signal-to-noise ratio, there was a significant difference between the two groups when the signal-to-noise ratio was 5 dB. The speech recognition accuracy of the young group decreased significantly when the signal-to-noise ratio was 0 dB, while that of the old group decreased significantly when the signal-to-noise ratio was 5 dB. Conclusions: With the increase of age, the speech perception in noisy environment and the activity of cerebral cortex gradually deteriorate, and the speech dominance hemisphere (left hemisphere) will be significantly affected by aging. The overall activation area and activation degree of the elderly under different speech tasks are lower than those of the young.
Acoustic Stimulation/methods*
;
Adolescent
;
Adult
;
Aged
;
Auditory Cortex/physiology*
;
Female
;
Humans
;
Male
;
Middle Aged
;
Spectroscopy, Near-Infrared
;
Speech Perception/physiology*
;
Technology
;
Young Adult
4.Neural mechanism for modulation of auditory response of the striatum by locomotion.
Wei Long HUANG ; Fei Xue LIANG
Journal of Southern Medical University 2022;42(5):766-771
OBJECTIVE:
To explore whether the characteristic responses to sound stimulations of the auditory neurons in the striatum is regulated in different behavioral states.
METHODS:
The auditory neurons in the striatum of awake C57BL/6J mice were selected for this study. We recorded the auditory response of the striatum to noises over a long period of time by building a synchronous in vivo electrophysiological and locomotion recording system and using glass microelectrode attachment recording. By analyzing the running speed of the mice, the behavioral states of the mice were divided into the quiet state and the active state, and the spontaneous activity and evoked responses of the auditory neurons in the striatum were analyzed in these two states.
RESULTS:
Compared with those recorded in the quiet state, the spontaneous activity of the auditory neurons in the striatum of the mice increased significantly (37.06±12.02 vs 18.51±10.91, P < 0.001) while the auditory response of the neurons decreased significantly (noise intensity=60 dB, 3.45±2.99 vs 3.04±2.76, P < 0.001) in the active state.
CONCLUSION
Locomotion has a significant inhibitory effect on the auditory response of the striatum, which may importantly contribute to the decline of sound information recognition ability in the active state.
Acoustic Stimulation
;
Animals
;
Auditory Cortex/physiology*
;
Evoked Potentials, Auditory
;
Locomotion/physiology*
;
Mice
;
Mice, Inbred C57BL
;
Neurons
5.Cross-Modal Interaction and Integration Through Stimulus-Specific Adaptation in the Thalamic Reticular Nucleus of Rats.
Yumei GONG ; Yuying ZHAI ; Xinyu DU ; Peirun SONG ; Haoxuan XU ; Qichen ZHANG ; Xiongjie YU
Neuroscience Bulletin 2022;38(7):785-795
Stimulus-specific adaptation (SSA), defined as a decrease in responses to a common stimulus that only partially generalizes to other rare stimuli, is a widespread phenomenon in the brain that is believed to be related to novelty detection. Although cross-modal sensory processing is also a widespread phenomenon, the interaction between the two phenomena is not well understood. In this study, the thalamic reticular nucleus (TRN), which is regarded as a hub of the attentional system that contains multi-modal neurons, was investigated. The results showed that SSA existed in an interactive oddball stimulation, which mimics stimulation changes from one modality to another. In the bimodal integration, SSA to bimodal stimulation was stronger than to visual stimulation alone but similar to auditory stimulation alone, which indicated a limited integrative effect. Collectively, the present results provide evidence for independent cross-modal processing in bimodal TRN neurons.
Acoustic Stimulation
;
Animals
;
Auditory Perception/physiology*
;
Geniculate Bodies
;
Rats
;
Rats, Wistar
;
Thalamic Nuclei/physiology*
6.Asymmetric response mechanism of auditory event related potentials.
Xiao-Fei LAI ; Zheng YAN ; Li-Cheng SHAO ; Fang DUAN
Acta Physiologica Sinica 2022;74(4):563-573
The classical auditory oddball paradigm is a commonly used experimental paradigm for evoking event related potentials (ERPs). The present study was aimed to explore the auditory cognitive processing mechanism of space perception of human brain. We employed an auditory oddball paradigm of binaural unbiased and biased sound intensity to compare and analyze the response characteristics of ERP. By focusing on the spatial lateralization characteristics of P300 and mismatch negativity (MMN) components, we analyzed their lateralization trends according to the laterality index. We found that both P300 and MMN components showed right-hemisphere lateralization phenomenon under the stimulation of asymmetric intensity of auditory acoustic. The results suggested that the right hemisphere of human brain played a key role in spatial information processing. The results also indicated that the hemispherical characteristics of the brain were not related to the actual spatial direction of the auditory stimulus, but were determined by the hemispherical functions of the brain. Furthermore, the results suggested that the MMN components induced by spatial differences were stronger in females than those in males.
Acoustic Stimulation
;
Auditory Perception/physiology*
;
Brain Mapping
;
Electroencephalography
;
Evoked Potentials
;
Evoked Potentials, Auditory/physiology*
;
Female
;
Humans
;
Male
7.Auditory response patterns of mouse primary auditory cortex to sound stimuli.
Qin Hong ZHENG ; Chang Bao SONG ; Fei Xue LIANG
Journal of Southern Medical University 2022;42(8):1212-1220
OBJECTIVE:
To investigate the auditory response patterns of mouse primary auditory cortex (A1) neurons.
METHODS:
In vivo cell-attached recordings and neural network modeling were performed to detect the changes in response patterns of A1 neurons of awake C57BL/6J mice to sound stimulation with varying lengths. A1 neuron signals were recorded for 216 neurons in 20 awake mice using a target sound stimulation sequence, and the classification and response characteristics of A1 neuron response patterns were examined using post-stimulus spike time histograms. To simulate the diversity of the A1 neuron response patterns, an A1 neuron model was established based on the Wilson-Cowan model and integral-firing model. The neuron connection weight parameters in the model were calculated by examining the micro loop structure of the pyramidal neurons, parvalbumin neurons, and somatostatin neurons in the A1 region, and the A1 neural network information coding model was constructed.
RESULTS:
The Onset response neurons only had fast spike response within 10 to 40 ms after the beginning of noise stimulation (122 neurons). The Sustained response neurons had spike response continuously during the noise stimulation (26 neurons). The On-off response neurons had fast spike response after the beginning and the end of noise stimulation (40 neurons). The Offset response neurons only had fast spike response within 10 to 40 ms after the end of noise stimulation (22 neurons). In the neural network model, the Onset peak neural activities of A1 pyramidal neurons, parvalbumin neurons, and somatostatin neurons were 0.7483, 0.5236 and 0.9427, respectively, and their response half peak widths were 18.5 ms, 12 ms and 31 ms during the 100 ms noise stimulation, respectively. By changing the feedforward excitation and synaptic inhibition time constants in the model, the neurons generated numerous different types of spike train.
CONCLUSION
The auditory response of mouse A1 neurons to sound stimuli shows mainly the Onset, Sustained, On-off, and Offset response patterns.
Acoustic Stimulation
;
Animals
;
Auditory Cortex/physiology*
;
Mice
;
Mice, Inbred C57BL
;
Parvalbumins
;
Somatostatin
8.Study on the feature of cortical auditory evoked potential under different auditory tasks in cochlear implant children.
Yi Di LIU ; Qi ZHENG ; Xin Yu WANG ; Ya Wen ZHAO ; Guang Jian NI ; Xin NI ; Hai Hong LIU
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2021;56(9):943-950
Objective: To investigate the variation regularity and influencing factors of cortical auditory evoked potential (CAEP) evoked by pure tone, syllable and tone stimuli in cochlear implant (CI) children. Methods: Cortical auditory evoked potential (CAEP) responses were collected from 46 CI children in the sound field. Pure tones with frequencies of 1 kHz and 2 kHz were used as the standard and the deviant respectively in the pure tone stimulation condition. The Chinese Mandarin tokens/ba/-/pa/and/ba1/-/ba4/pairs were used as the stimuli respectively in the syllable and tone stimulation condition. The latency, amplitude and presence rate of P1 and mismatch negative(MMN) were obtained and the correlation between the difficulty of auditory task, the age of hearing month, the duration of severe-profound hearing loss, the wearing history of hearing aid before CI, the hearing threshold of the better ear before CI and the latency and amplitude of P1 and MMN were analyzed. All statistical analyses and figures were conducted using SPSS 25.0. Results: The P1 presence rate of pure tone, syllable and tone group was 100% (17/17), 100% (13/13) and 75.0% (12/16), respectively, with significant difference (χ²=8.214, P=0.016). There was significant difference between pure tone group and tone group (χ²=4.836, P=0.028), but no significant difference between pure tone group and syllable group, syllable group and tone group. The MMN presence rate of pure tone, syllable and tone group was 94.1% (16/17), 84.6% (11/13) and 62.5% (10/16), respectively, but no significant difference among the three groups with different auditory tasks(χ²=0.066, P=0.066). No significant difference was observed among the three groups of different auditory tasks in the latency and amplitude of P1 and MMN. Multiple linear regression analysis showed that the latency of P1 was positively correlated with the difficulty of auditory task and the hearing threshold of the better ear before CI, and negatively correlated with hearing age and the history of hearing aid before CI. The latency of MMN was positively correlated with the difficulty of auditory task, and negatively correlated with hearing age. Conclusions: The P1 presence rate of pure tone auditory task is significantly higher than that of tone auditory task. The difficulty of auditory task, hearing age, the history of hearing aid before CI, and the hearing threshold of the better ear before CI has significant effects on the P1 latency. The difficulty of auditory task and hearing age has significant effects on the MMN latency.
Acoustic Stimulation
;
Child
;
Cochlear Implantation
;
Cochlear Implants
;
Evoked Potentials, Auditory
;
Hearing
;
Hearing Aids
;
Humans
9.Comparison of ASSR, ABR and 40 Hz AERP Response Thresholds at Different Frequencies and Their Forensic Applications.
Xin-Yuan ZHANG ; Fang-Liang LUO ; Long-Long CHENG ; Yan-He XIONG ; Ji-Hui LIU
Journal of Forensic Medicine 2021;37(6):813-816
OBJECTIVES:
To explore the relationship between the frequency characteristics and response threshold of auditory steady-state response (ASSR), auditory brainstem response (ABR) and 40 Hz auditory event related potential (40 Hz AERP), and their application values in forensic medicine.
METHODS:
Thirty volunteers with normal hearing (60 ears) were selected to perform pure tone audiometry (PTA) threshold and ASSR, ABR and 40 Hz AERP response threshold tests in the standard sound insulation shielding room, and the results were statistically analyzed by SPSS 22.0 software.
RESULTS:
At 0.5 kHz and 1.0 kHz frequencies, the correlation between 40 Hz AERP response threshold and PTA threshold was good, which was better than that of ASSR and ABR response threshold. At 2.0 kHz and 4.0 kHz frequencies, the correlation between ASSR and ABR response thresholds and PTA threshold was good, which was better than that of 40 Hz AERP response threshold.
CONCLUSIONS
To evaluate the hearing at 0.5 kHz and 1.0 kHz frequencies, it is recommended to use 40 Hz AERP and ASSR to comprehensively assess the PTA threshold of the subjects. To evaluate the hearing at 2.0 kHz and 4.0 kHz frequencies, ABR and ASSR are recommended to assess the PTA threshold of subjects comprehensively. The combination of ASSR, ABR and 40 Hz AERP can improve the accuracy of hearing function evaluation.
Acoustic Stimulation/methods*
;
Audiometry, Evoked Response
;
Audiometry, Pure-Tone
;
Auditory Threshold/physiology*
;
Evoked Potentials, Auditory, Brain Stem/physiology*
;
Forensic Medicine
;
Hearing/physiology*
;
Humans

Result Analysis
Print
Save
E-mail