1.Research progress on structure, structure-activity relationship, and biological activity of Aconiti Lateralis Radix Praeparata polysaccharides.
Jun TANG ; Xin YANG ; Xin YANG ; Qi HU ; Ji-Hai GAO ; Ming YANG ; Ya-Nan HE ; Ding-Kun ZHANG
China Journal of Chinese Materia Medica 2023;48(20):5410-5418
Aconiti Lateralis Radix Praeparata polysaccharides(AP) are a class of bioactive macromolecules extracted from the herbs of Aconiti Lateralis Radix Praeparata and its various processed products. Since the AP was first separated in 1986, its pharmacological effects include immune regulation, anti-tumor, anti-depression, organ protection, hypoglycemia, and anti-inflammatory had been found. In recent years, with the development of polysaccharide extraction, separation, and structure identification technologies, more than 20 kinds of AP have been separated from Aconiti Lateralis Radix Praeparata and its processed products, and they have ob-vious differences in relative molecular weight, monosaccharide composition, glycosidic bond, structural characteristics, and biological activities. In particular, AP may be dissolved, degraded, or allosteric under the complex processing environment of fermentation, soaking, cooking, etc., leading to the diversified structure of AP, which provides a possibility for further understanding of the structure-activity relationship of AP. Therefore, this study systematically reviewed the research progress on the structure and structure-activity relationship of AP, summarized the biological activity and potential action mechanism of AP, and discussed the technical challenges in the development and application of AP, so as to promote the quality control and further development and utilization of AP.
Drugs, Chinese Herbal/chemistry*
;
Aconitum/chemistry*
;
Polysaccharides/pharmacology*
;
Structure-Activity Relationship
;
Technology
2.Regularity of prescriptions for sick sinus syndrome based on latent structure combined with association rules.
Jing-Jing WEI ; Rui YU ; Peng-le HAO ; Xing-Yuan LI ; Xin-Lu WANG ; Li-Jie QIAO ; Ming-Jun ZHU
China Journal of Chinese Materia Medica 2023;48(22):6225-6233
This study aims to mine the regularity of traditional Chinese medicine(TCM) prescriptions for sick sinus syndrome(SSS) and provide a reference for clinical syndrome differentiation and treatment. The relevant papers were retrieved from CNKI, Wanfang, VIP, and SinoMed with the time interval from inception to January 31, 2023. The relevant information from qualified papers was extracted to establish a library. Lantern 5.0 and Rstudio were used to analyze the latent structure and association rules of TCMs with the frequency ≥3%, which combined with frequency descriptions, were used to explore the rules of TCM prescriptions for SSS. A total of 192 TCM prescriptions were included, involving 115 TCMs with the cumulative frequency of 1 816. High-frequency TCMs include Aconiti Lateralis Radix Praeparata, Ginseng Radix et Rhizoma, Glycyrrhizae Radix et Rhizoma, Astragali Radix, and Salviae Miltiorrhizae Radix et Rhizoma. The high-frequency medicines mainly had the effects of tonifying, releasing exterior with pungent-warm, and activating blood and resolving stasis. The analysis of the latent structure model yielded 13 hidden variables, 26 hidden classes, 8 comprehensive cluster models, and 21 core prescriptions. Accordingly, the common syndromes of SSS were inferred as heart-Yang Qi deficiency, heart-spleen Yang deficiency, heart-kidney Yang deficiency, Yang deficiency and blood stasis, both Qi and Yin deficiency and blood stasis, and Yin and Yang deficiency. The analysis of association rules predicted 30 strong association rules, among which Ginseng Radix et Rhizoma-Aconiti Lateralis Radix Praeparata had the highest support. SSS is a syndrome with Yang deficiency and Qi deficiency as the root causes and cold, phlegm, and stasis as the manifestations. The clinical treatment of SSS should focus on warming Yang and replenishing Qi, which should be supplemented with the therapies of activating blood and resolving stasis, warming interior and dissipating cold, or regulating Qi movement for resolving phlegm according to the patients' syndromes.
Humans
;
Sick Sinus Syndrome/drug therapy*
;
Yang Deficiency/drug therapy*
;
Drugs, Chinese Herbal/pharmacology*
;
Medicine, Chinese Traditional
;
Prescriptions
;
Rhizome/chemistry*
;
Aconitum
;
Panax
3.Progress in antitumor activity of diterpenoid alkaloids in plants of Aconitum.
Xiao-Zheng CHEN ; Ju CHENG ; Xiao-Yi SHI ; Li-Yuan YANG ; Xiao-Dong XIE
China Journal of Chinese Materia Medica 2023;48(14):3765-3773
Small-molecule compounds with rich sources have diverse structures and activities. The active ingredients in traditional Chinese medicine(TCM) provide new sources for the discovery of new antitumor drugs. Aconitum plants as Chinese medicinal plants have the effects of dispelling wind, removing dampness, warming meridian, and relieving pain. They are mainly used to treat inflammation, pain, rheumatism, and tumors, improve heart function, and dilate blood vessels in clinical practice. Diterpenoid alkaloids are the main active components of Aconitum plants, including C20-, C19-, C18-diterpenoid alkaloids and bis-diterpenoid alkaloids. Stu-dies have demonstrated that diterpenoid alkaloids can effectively treat lung cancer, liver cancer, breast cancer, colon cancer and other cancers. Diterpenoid alkaloids are considered as the most promising natural compounds against cancers. In this review, we summarized the chemical structures and antitumor activities of C20-, C19-, C18-diterpenoid alkaloids and bis-diterpenoid alkaloids extracted from plants of Aconitum, aiming to provide reference for further development of diterpenoid alkaloids from Aconitum as antitumor drugs.
Humans
;
Aconitum/chemistry*
;
Molecular Structure
;
Alkaloids/analysis*
;
Diterpenes/chemistry*
;
Antineoplastic Agents/chemistry*
;
Plant Roots/chemistry*
4.Construction of a high-throughput screening model for mitochondrial function of Aconiti Lateralis Radix Praeparata by machine learning algorithm and mechanism analysis.
Ying-Li ZHU ; Hong-Bin YANG ; Jia-Rui WU ; Xin SUN ; Bing ZHANG
China Journal of Chinese Materia Medica 2022;47(9):2509-2515
A high-throughput screening machine learning model for mitochondrial function was constructed, and compounds of Aco-niti Lateralis Radix Praeparata were predicted. Deoxyaconitine with the highest score and benzoylmesaconine with the lowest score among the compounds screened by the model were selected for mitochondrial mechanism analysis. Mitochondrial function data were collected from PubChem and Tox21 databases. Random forest and gradient boosted decision tree algorithms were separately used for mo-deling, and ECFP4(extended connectivity fingerprint, up to four bonds) and Mordred descriptors were employed for training, respectively. Cross-validation test was carried out, and balanced accuracy(BA) and overall accuracy were determined to evaluate the performance of different combinations of models and obtain the optimal algorithm and hyperparameters for modeling. The data of Aconiti Lateralis Radix Praeparata compounds in TCMSP database were collected, and after prediction and screening by the constructed high-throughput screening machine learning model, deoxyaconitine and benzoylmesaconine were selected to measure mitochondrial membrane potential, reactive oxygen species(ROS) level and protein expression of B-cell lymphoma 2(Bcl-2), Bcl-2-associated X protein(Bax) and peroxisome proliferator-activated receptor-γ-coactivator 1α(PGC-1α). The results showed that the model constructed using gradient boosted decision tree+Mordred algorithm performed better, with a cross-validation BA of 0.825 and a test set accuracy of 0.811. Deoxyaconitine and benzoylmesaconine changed the ROS level(P<0.001), mitochondrial membrane potential(P<0.001), and protein expression of Bcl-2(P<0.001, P<0.01) and Bax(P<0.001), and deoxyaconitine increased the expression of PGC-1α protein(P<0.01). The high-throughput screening model for mitochondrial function constructed by gradient boosted decision tree+Mordred algorithm was more accurate than that by random forest+ECFP4 algorithm, which could be used to build an algorithm model for subsequent research. Deoxyaconitine and benzoylmesaconine affected mitochondrial function. However, deoxyaconitine with higher score also affected mitochondrial biosynthesis by regulating PGC-1α protein.
Aconitum/chemistry*
;
Algorithms
;
Drugs, Chinese Herbal/chemistry*
;
High-Throughput Screening Assays
;
Machine Learning
;
Mitochondria
;
Reactive Oxygen Species
;
bcl-2-Associated X Protein
5.Aconitum heterophyllum Wall. ex Royle: A critically endangered medicinal herb with rich potential for use in medicine.
Tareq A WANI ; Zahoor A KALOO ; Nisar A DANGROO
Journal of Integrative Medicine 2022;20(2):104-113
Aconitum heterophyllum (Patrees) is a critically endangered medicinal herb of the northwestern Himalayas and has enormous pharmacological potential. It is the only nonpoisonous member of the genus Aconitum, and has been used as a medicinal herb since ancient times. A. heterophyllum is an important ingredient in many traditional systems of medicine. Mostly, it is harvested for its roots, and its medicinal properties are due to the presence of diverse bioactive secondary metabolites, commonly known as aconites. Our understanding of the pharmacological properties of this intriguing genus is continuously growing due to its broad chemical diversity. The therapeutic uses identified by traditional medicinal practice are receiving extensive study. Multiple in vitro experimental investigations of A. heterophyllum have reported the analgesic, anti-inflammatory, antiarrhythmic, antiparasitic and anticancer properties, as well as its effects on the central nervous system. In this review, we highlight the classification, distribution, commerce, traditional uses, phytochemistry, pharmacology and conservation measures relevant to this species. Additionally, this review includes the biosynthetic pathways of A. heterophyllum's key constituents, which could be targeted to enhance the expression levels of desired metabolites via genetic interventions. Studying the genomics, transcriptomics, proteomics and metabolomic aspects of this species would be helpful in developing highly designed genotypes and chemotypes of this species to be used in commercial production.
Aconitum/genetics*
;
Ethnopharmacology
;
Plant Extracts/chemistry*
;
Plant Roots/chemistry*
;
Plants, Medicinal/chemistry*
6.Therapeutic effects of alkaloids in Tibetan medicine Bangna (Aconiti Penduli et Aconiti Flavi Radix) on osteoarthritis rats and mechanisms.
Qi WANG ; Jing PENG ; Yang LIU ; Yang TIAN ; Jie LI ; Yao-Yao REN ; Jian GU ; Rui TAN
China Journal of Chinese Materia Medica 2022;47(17):4715-4722
This study aims to investigate the therapeutic effects of alkaloids in Tibetan medicine Bangna(Aconiti Penduli et Aconiti Flavi Radix) on osteoarthritis(OA) rats in vitro and in vivo and the underlying mechanisms. Chondrocytes were isolated from 2-3 week-old male SD rats and lipopolysaccharide(LPS) was used to induce OA in chondrocytes in vitro. Methyl thiazolyl tetrazolium(MTT) assay was used to investigate the toxicity of seven alkaloids(12-epi-napelline, songorine, benzoylaconine, aconitine, 3-acetylaconitine, mesaconitine, and benzoylmesaconine) to chondrocytes. Chondrocytes were classified into the control group, model group(induced by LPS 5 μg·mL~(-1) for 12 h), and administration groups(induced by LPS 5 μg·mL~(-1) for 12 h and incubated for 24 h). The protein expression of inflammatory factors cyclooxygenase-2(COX-2), inducible nitric oxide synthetase(iNOS), tumor necrosis factor-α(TNF-α), and interleukin-1β(IL-1β) in each group were detected by Western blot, and the protein expression of matrix metalloprotease-13(MMP-13), aggrecan, collagen Ⅱ, fibroblast growth factor 2(FGF2) by immunofluorescence staining. For the in vivo experiment, sodium iodoacetate was used to induce OA in rats, and the expression of MMP-13, TNF-α, and FGF2 in cartilage tissues of rats in each group was detected by immunohistochemistry. The results showed that the viability of chondrocytes could reach more than 90% under the treatment of the seven alkaloids in a certain dose range. Aconitine, 12-epi-napelline, songorine, 3-acetylaconitine, and mesaconitine could decrease the protein expression of inflammatory factors COX-2, iNOS, TNF-α and IL-1β compared with the model group. Moreover, 12-epi-napelline, aconitine, and mesaconitine could down-regulate the expression of MMP-13 and up-regulate the expression of aggrecan and collagen Ⅱ. In addition, compared with the model group and other Bangna alkaloids, 12-epi-napelline significantly up-regulated the expression of FGF2. Therefore, 12-epi-napelline was selected for the animal experiment in vivo. Immunohistochemistry results showed that 12-epi-napelline could significantly reduce the expression of MMP-13 and TNF-α in cartilage tissues, and up-regulate the expression of FGF2 compared with the model group. In conclusion, among the seven Bangna alkaloids, 12-epi-napelline can promote the repair of OA in rats by down-regulating the expression of MMP-13 and TNF-α and up-regulating the expression of FGF2.
Aconitine/therapeutic use*
;
Aconitum/chemistry*
;
Aggrecans/metabolism*
;
Alkaloids/therapeutic use*
;
Animals
;
Cells, Cultured
;
Cyclooxygenase 2/metabolism*
;
Fibroblast Growth Factor 2/therapeutic use*
;
Interleukin-1beta/metabolism*
;
Iodoacetic Acid/therapeutic use*
;
Lipopolysaccharides
;
Male
;
Matrix Metalloproteinase 13/metabolism*
;
Medicine, Tibetan Traditional
;
NF-kappa B/metabolism*
;
Osteoarthritis/drug therapy*
;
Rats
;
Rats, Sprague-Dawley
;
Tumor Necrosis Factor-alpha/metabolism*
7.A systematic review of pharmacological activities, toxicological mechanisms and pharmacokinetic studies on Aconitum alkaloids.
Li MI ; Yu-Chen LI ; Meng-Ru SUN ; Pei-Lin ZHANG ; Yi LI ; Hua YANG
Chinese Journal of Natural Medicines (English Ed.) 2021;19(7):505-520
The tubers and roots of Aconitum (Ranunculaceae) are widely used as heart medicine or analgesic agents for the treatment of coronary heart disease, chronic heart failure, rheumatoid arthritis and neuropathic pain since ancient times. As a type of natural products mainly extracted from Aconitum plants, Aconitum alkaloids have complex chemical structures and exert remarkable biological activity, which are mainly responsible for significant effects of Aconitum plants. The present review is to summarize the progress of the pharmacological, toxicological, and pharmacokinetic studies of Aconitum alkaloids, so as to provide evidence for better clinical application. Research data concerning pharmacological, toxicological and pharmacokinetic studies of Aconitum alkaloids were collected from different scientific databases (PubMed, CNKI, Google Scholar, Baidu Scholar, and Web of Science) using the phrase Aconitum alkaloids, as well as generic synonyms. Aconitum alkaloids are both bioactive compounds and toxic ingredients in Aconitum plants. They produce a wide range of pharmacological activities, including protecting the cardiovascular system, nervous system, and immune system and anti-cancer effects. Notably, Aconitum alkaloids also exert strong cardiac toxicity, neurotoxicity and liver toxicity, which are supported by clinical studies. Finally, pharmacokinetic studies indicated that cytochrome P450 proteins (CYPs) and efflux transporters (ETs) are closely related to the low bioavailability of Aconitum alkaloids and play an important role in their metabolism and detoxification in vivo.
Aconitum/chemistry*
;
Alkaloids/toxicity*
;
Biological Availability
;
Phytochemicals/toxicity*
;
Plant Roots/chemistry*
8.Chemical variation in Aconti Kusnezoffii Radix before and after processing based on UPLC-Orbitrap-MS.
Mei-Ru ZHI ; Xin-Ru GU ; Shu HAN ; Kai-Yang LIU ; Zi-Qin LIU ; Ya-Nan TANG ; Xi-Tao HAN ; Fei LI ; Zhi-Gang YANG ; Peng TAN ; Hai-Yu ZHAO ; Hong DU
China Journal of Chinese Materia Medica 2020;45(5):1082-1089
Some Chinese herbal medicine needs to be processed before it can be used as medicine, especially toxic Chinese medicine. Highly toxic Aconti Kusnezoffii Radix(Caowu in Chinese) is widely used in traditional Chinese medicine and Mongolian medicine. In traditional Chinese medicine, Caowu is usually processed by boiling with water(CW) until no white part inside and being tasted without tongue-numbing. In Mongolian medicine, it is usually soaked in Chebulae Fructus(Hezi in Chinese) decoction for several days(CH). Both methods could reduce toxicity according to reports. The biggest difference between CW and CH is that CW needs to be heated for 4-6 h, while CH needs Hezi as processing adjuvants. To explore the toxicity reduction mechanism of CW and CH, we studied the contents of various compounds in Caowu processed by two methods by UPLC-Orbitrap-MS. The results indicated that CW had 14 new ingredients, such as 14-O-anisoylneoline and dehydro-mesaconitine, while N-demethyl-mesaconitine and aconitine disappeared. At the same time, it could significantly decrease the content of diester diterpenoid alkaloids and increase the contents of monoester diterpenoid alkaloids and amine-diterpenoid alkaloids. CH had 9 new ingredients from Hezi, like gallic acid, chebulic acid and shikimic acid. Neither the kinds nor the contents of compositions from Caowu in CH changed little. This suggested that the processing mechanism of CW reduced highly toxic components(diester diterpenoid alkaloids) and increased the content of lowly toxic components(monoester diterpenoid alkaloids and amine-diterpenoid alkaloids). Attenuated principle of CH may be related to the components of Hezi. In this experiment, the conclusion shows that the chemical constituents of CW and CH are essentially different, and the two methods have different toxicity reduction principles.
Aconitine
;
Aconitum/chemistry*
;
Alkaloids/analysis*
;
Chemistry, Pharmaceutical/methods*
;
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal/analysis*
;
Mass Spectrometry
;
Medicine, Chinese Traditional
9.Transcriptomics study on mechanism of Aconiti Lateralis Radix Praeparata in treatment of rats with acute heart failure.
Qi-Hao WANG ; Ji-Hai GAO ; Hai-Mei CHEN ; Xiao-Fang XIE ; Cheng PENG
China Journal of Chinese Materia Medica 2019;44(1):131-140
In this study,transcriptomics technique was used to investigate the mechanism of action of Aconiti Lateralis Radix Praeparata on acute heart failure rats induced by propafenone hydrochloride.First,rats were randomly divided into normal group,model group and administration group(1.25,2.5,5 g·kg-1).A rat with acute heart failure was constructed by intravenous femoral administration of proparone hydrochloride.The changes of heart rate,+dp/dtmaxand-dp/dtmaxat 5,10,20,30 and 60 min were recorded.Then another group of rats were given the same drug delivery method.In another group of animals,serum TNF-α could be determined by ELISA with the same dosage method.High-throughput sequencing technology was used to detect all gene expression differences in cardiac tissue samples of rats with acute heart failure.Through functional annotation and enrichment analysis,gene expression signaling pathways of rats with acute heart failure and rats with post-administration heart failure were screened out.The results showed that heart rate and LV+dp/dtmaxand LV-dp/dtmaxwere significantly decreased in the model group(P<0.05),while heart rate and LV+dp/dtmax and LV-dp/dtmaxwere significantly increased in the drug group(P<0.05,P<0.01).Moreover,ANP,BNP and TNF-α in acute heart failure rats was significantly decreased in high-dose aconite decoction group(P<0.05).Transcriptomics analysis showed that the mechanism of action was mainly related to activation of PI3 K-AKT signaling pathway and Jak-STAT pathway.Compared with the model group,aconite decoction up-regulated the expression of phosphatidylinostol 3-kinase(PI3 K),lysophosphatidic acid(LAP3),Bcl-3 and STAT genes,and down-regulated the expression of integrin(ITGA),nuclear orphan receptor(Nur77) genes.It could be concluded that the mechanism of aconite in treating acute heart failure rats may be related to the regulation of the PI3 k-Akt/Jak-STAT pathway.
Aconitum
;
chemistry
;
Animals
;
Drugs, Chinese Herbal
;
pharmacology
;
Heart
;
Heart Failure
;
drug therapy
;
metabolism
;
Myocardium
;
metabolism
;
Random Allocation
;
Rats
;
Signal Transduction
;
Transcriptome
10.Chemical components and pharmacological action of Aconiti Radix.
Shuang LI ; Rui LI ; Yong ZENG ; Xian-Li MENG ; Chuan-Biao WEN ; Shi-Chao ZHENG
China Journal of Chinese Materia Medica 2019;44(12):2433-2443
Aconiti Radix is a commonly used traditional Chinese medicine( TCM) herb in clinic,with the effects in expelling wind and removing damness,warming menstruation and relieving pain. With a long medicinal history and high medicinal value,it was used for anemofrigid-damp arthralgia,arthralgia,cold hernia and anesthesia analgesia. Modern pharmacological studies have shown that Aconiti Radix has a good therapeutic effect on rheumatoid arthritis,neuropathic pain and hypertension. As a well-known toxic TCM herb,its main pharmacodynamic and toxic components are alkaloids,which can lead to neurotoxicity and cardiotoxicity while exerting anti-inflammatory,analgesic,anti-tumor and other pharmacodynamic effects. Therefore,it is often processed to reduce its toxicity or combined with Paeoniae Radix Alba and Stephaniae Tetrandrae Radix to achieve the purpose of reducing toxicity and increasing efficacy in clinic.In recent years,with the deepening of the study on the incompatibility of TCM represented by " eighteen incompatible herbs",there have been new findings about TCM incompatibility. It has been found complementary effect,rather than no obvious toxic and side effects after the combination with incompatible herbs of Aconiti Radix. To provide the basis for further study and clinical application of Aconiti Radix,this paper reviewed chemical components,pharmacological action,toxicity and compatibility of Aconiti Radix by consulting relevant literatures published in recent years at home and abroad. Meanwhile,this paper also described the relationship between chemical constituents,as well as anti-inflammatory,analgesic,anti-tumor and other pharmacological effects and toxicity.
Aconitum
;
chemistry
;
Alkaloids
;
Drugs, Chinese Herbal
;
pharmacology
;
Humans
;
Medicine, Chinese Traditional
;
Plant Roots
;
chemistry

Result Analysis
Print
Save
E-mail