2.Pharmacokinetic-pharmacodynamic analysis of ciprofloxacin in elderly Chinese patients with lower respiratory tract infections caused by Gram-negative bacteria.
Xiao-Yan GAI ; Shi-Ning BO ; Ning SHEN ; Qing-Tao ZHOU ; An-Yue YIN ; Wei LU
Chinese Medical Journal 2019;132(6):638-646
BACKGROUND:
Ciprofloxacin is usually used in the treatment of lower respiratory tract infections (LRTIs). Recent studies abroad have shown ciprofloxacin is inadequately dosed and might lead to worse outcomes. The aim of this study was to perform pharmacokinetic and pharmacodynamic analyses of ciprofloxacin in elderly Chinese patients with severe LRTIs caused by Gram-negative bacteria.
METHODS:
From September 2012 to June 2014, as many as 33 patients were empirically administered beta-lactam and ciprofloxacin combination therapy. Patients were infused with 200 or 400 mg of ciprofloxacin every 12 h, which was determined empirically by the attending physician based on the severity of the LRTI and the patient's renal condition. Ciprofloxacin serum concentrations were determined by high-performance liquid chromatography. Bacterial culture was performed from sputum samples and/or endotracheal aspirates, and the minimum inhibitory concentrations (MICs) of ciprofloxacin were determined. The ratios of the area under the serum concentration-time curve to the MIC (AUC/MIC) and of the maximum serum concentration of the drug to the MIC (Cmax/MIC) were calculated. The baseline data and pharmacokinetic parameters were compared between clinical success group and clinical failure group, bacteriologic success group and bacteriologic failure group.
RESULTS:
Among the 33 patients enrolled in the study, 17 were infected with Pseudomonas aeruginosa, 14 were infected with Acinetobacter baumannii, and two were infected with Klebsiella pneumoniae. The mean age of the patients was 76.9 ± 6.7 years. Thirty-one patients (93.4%) did not reach the target AUC/MIC value of >125, and 29 patients (87.9%) did not reach the target Cmax/MIC value of >8. The AUC/MIC and Cmax/MIC ratios in the clinical success group were significantly higher than those in the clinical failure group (61.1 [31.7-214.9] vs. 10.4 [3.8-66.1], Z = -4.157; 9.6 [4.2-17.8] vs. 1.3 [0.4-4.7], Z = -4.018; both P < 0.001). The AUC/MIC and Cmax/MIC ratios in the patients for whom the pathogens were eradicated were significantly higher than those in the patients without the pathogens eradicated (75.3 [31.7-214.9] vs. 10.5 [3.8-66.1], Z = -3.938; 11.4 [4.2-17.8] vs. 1.4 [0.4-5.4], Z = -3.793; P < 0.001 for both). Receiver operating characteristic curve analysis showed that the AUC/MIC and Cmax/MIC values were closely associated with clinical and bacteriologic efficacies (P < 0.001 in both).
CONCLUSIONS
Ciprofloxacin is inadequately dosed against Gram-negative bacteria, especially for those with relatively high MIC values. Consequently, the target values, AUC/MIC > 125 and Cmax/MIC > 8, cannot be reached.
Acinetobacter baumannii
;
drug effects
;
pathogenicity
;
Aged
;
Aged, 80 and over
;
Chromatography, High Pressure Liquid
;
Ciprofloxacin
;
pharmacokinetics
;
pharmacology
;
Female
;
Gram-Negative Bacteria
;
drug effects
;
pathogenicity
;
Humans
;
Male
;
Microbial Sensitivity Tests
;
Pseudomonas aeruginosa
;
drug effects
;
pathogenicity
;
Respiratory Tract Infections
;
drug therapy
;
metabolism
;
microbiology
3.In Vitro Synergistic Effects of Antimicrobial Combinations on Extensively Drug-Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Isolates.
Hyukmin LEE ; Kyung Ho ROH ; Seong Geun HONG ; Hee Bong SHIN ; Seok Hoon JEONG ; Wonkeun SONG ; Young UH ; Dongeun YONG ; Kyungwon LEE
Annals of Laboratory Medicine 2016;36(2):138-144
BACKGROUND: Extensively drug-resistant (XDR) Pseudomonas aeruginosa and Acinetobacter baumannii are a threat to hospitalized patients. We evaluated the effects of antimicrobial combinations on XDR P. aeruginosa and A. baumannii isolates. METHODS: P. aeruginosa and A. baumannii isolates, which were resistant to all antibiotics except colistin (CL), were collected from eight hospitals in Korea. Genes encoding metallo-beta-lactamases (MBLs) and OXA carbapenemases were detected by PCR in eight P. aeruginosa and 30 A. baumannii isolates. In vitro synergy of antimicrobial combinations was tested by using the checkerboard method. RESULTS: Minimum inhibitory concentrations of beta-lactams, aminoglycosides, and fluoroquinolones were very high, while that of CL was low for majority of XDR P. aeruginosa and A. baumannii isolates. Antimicrobial combinations including Imipenem (IPM)-CL, ceftazidime (CAZ)-CL, and rifampin (RIF)-CL exerted only additive/indifferent effects on majority of XDR P. aeruginosa isolates. Proportions of XDR A. baumannii isolates that showed synergistic and additive/indifferent inhibition after treatment with antimicrobial combinations used are as follows: IPM-ampicillin-sulbactam (AMS), 17% and 80% isolates, respectively; IPM-rifampin (RIF), 13% and 81% isolates, respectively; IPM-CL, 13% and 87% isolates, respectively; and RIF-COL, 20% and 73% isolates, respectively. Significant proportion (19%) of XDR P. aeruginosa isolates produced MBLs, and majority (82%) of A. baumannii isolates produced either MBLs or OXA-23. CONCLUSIONS: Our results suggest that combinations of IPM-AMS, IPM-RIF, IPM-CL, and RIF-CL are more useful than individual drugs for treating 13-20% of XDR A. baumannii infections.
Acinetobacter baumannii/*drug effects/genetics/isolation & purification
;
Aminoglycosides/pharmacology
;
Anti-Infective Agents/*pharmacology
;
Bacterial Proteins/genetics/metabolism
;
Drug Resistance, Multiple, Bacterial/*drug effects
;
Drug Synergism
;
Fluoroquinolones/pharmacology
;
Imipenem/pharmacology
;
Microbial Sensitivity Tests
;
Polymerase Chain Reaction
;
Pseudomonas aeruginosa/*drug effects/genetics/isolation & purification
;
beta-Lactamases/genetics/metabolism
4.Identification of Acinetobacter Species Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.
Seri JEONG ; Jun Sung HONG ; Jung Ok KIM ; Keon Han KIM ; Woonhyoung LEE ; Il Kwon BAE ; Kyungwon LEE ; Seok Hoon JEONG
Annals of Laboratory Medicine 2016;36(4):325-334
BACKGROUND: Acinetobacter baumannii has a greater clinical impact and exhibits higher antimicrobial resistance rates than the non-baumannii Acinetobacter species. Therefore, the correct identification of Acinetobacter species is clinically important. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has recently become the method of choice for identifying bacterial species. The purpose of this study was to evaluate the ability of MALDI-TOF MS (Bruker Daltonics GmbH, Germany) in combination with an improved database to identify various Acinetobacter species. METHODS: A total of 729 Acinetobacter clinical isolates were investigated, including 447 A. baumannii, 146 A. nosocomialis, 78 A. pittii, 18 A. ursingii, 9 A. bereziniae, 9 A. soli, 4 A. johnsonii, 4 A. radioresistens, 3 A. gyllenbergii, 3 A. haemolyticus, 2 A. lwoffii, 2 A. junii, 2 A. venetianus, and 2 A. genomospecies 14TU. After 212 isolates were tested with the default Bruker database, the profiles of 63 additional Acinetobacter strains were added to the default database, and 517 isolates from 32 hospitals were assayed for validation. All strains in this study were confirmed by rpoB sequencing. RESULTS: The addition of the 63 Acinetobacter strains' profiles to the default Bruker database increased the overall concordance rate between MALDI-TOF MS and rpoB sequencing from 69.8% (148/212) to 100.0% (517/517). Moreover, after library modification, all previously mismatched 64 Acinetobacter strains were correctly identified. CONCLUSIONS: MALDI-TOF MS enables the prompt and accurate identification of clinically significant Acinetobacter species when used with the improved database.
Acinetobacter Infections/*microbiology/pathology
;
Acinetobacter baumannii/*chemistry/classification/isolation & purification
;
Bacterial Proteins/chemistry/genetics/metabolism
;
Databases, Factual
;
Humans
;
Phylogeny
;
RNA, Ribosomal, 16S/chemistry/genetics/metabolism
;
*Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
5.Prediction of Putative Resistance Islands in a Carbapenem-Resistant Acinetobacter baumannii Global Clone 2 Clinical Isolate.
Yangsoon LEE ; Roshan D'SOUZA ; Dongeun YONG ; Kyungwon LEE
Annals of Laboratory Medicine 2016;36(4):320-324
BACKGROUND: We investigated the whole genome sequence (WGS) of a carbapenem-resistant Acinetobacter baumannii isolate belonging to the global clone 2 (GC2) and predicted resistance islands using a software tool. METHODS: A. baumannii strain YU-R612 was isolated from the sputum of a 61-yr-old man with sepsis. The WGS of the YU-R612 strain was obtained by using the PacBio RS II Sequencing System (Pacific Biosciences Inc., USA). Antimicrobial resistance genes and resistance islands were analyzed by using ResFinder and Genomic Island Prediction software (GIPSy), respectively. RESULTS: The YU-R612 genome consisted of a circular chromosome (ca. 4,075 kb) and two plasmids (ca. 74 kb and 5 kb). Its sequence type (ST) under the Oxford scheme was ST191, consistent with assignment to GC2. ResFinder analysis showed that YU-R612 possessed the following resistance genes: four β-lactamase genes bla(ADC-30), bla(OXA-66), bla(OXA-23), and bla(TEM-1); armA, aadA1, and aacA4 as aminoglycoside resistance-encoding genes; aac(6')Ib-cr for fluoroquinolone resistance; msr(E) for macrolide, lincosamide, and streptogramin B resistance; catB8 for phenicol resistance; and sul1 for sulfonamide resistance. By GIPSy analysis, six putative resistant islands (PRIs) were determined on the YU-R612 chromosome. Among them, PRI1 possessed two copies of Tn2009 carrying bla(OXA-23), and PRI5 carried two copies of a class I integron carrying sul1 and armA genes. CONCLUSIONS: By prediction of resistance islands in the carbapenem-resistant A. baumannii YU-R612 GC2 strain isolated in Korea, PRIs were detected on the chromosome that possessed Tn2009 and class I integrons. The prediction of resistance islands using software tools was useful for analysis of the WGS.
Acinetobacter Infections/*drug therapy/microbiology
;
Acinetobacter baumannii/drug effects/*genetics/isolation & purification
;
Anti-Bacterial Agents/pharmacology/*therapeutic use
;
Bacterial Proteins/genetics
;
Carbapenems/*therapeutic use
;
DNA, Bacterial/chemistry/*genetics/metabolism
;
Drug Resistance, Bacterial
;
Genomic Islands/genetics
;
Humans
;
Microbial Sensitivity Tests
;
Multilocus Sequence Typing
;
Plasmids/genetics/metabolism
;
Polymerase Chain Reaction
;
Sequence Analysis, DNA
6.Evaluation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry-Based VITEK MS System for the Identification of Acinetobacter Species from Blood Cultures: Comparison with VITEK 2 and MicroScan Systems.
Seung Yeob LEE ; Jong Hee SHIN ; Soo Hyun KIM ; Myung Geun SHIN ; Soon Pal SUH ; Dong Wook RYANG
Annals of Laboratory Medicine 2015;35(1):62-68
BACKGROUND: Acinetobacter species are the leading cause of bloodstream infection (BSI), but their correct identification is challenging. We evaluated the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based VITEK MS (bioMerieux, France), and two automated systems, VITEK 2 (bioMerieux) and MicroScan (Siemens, USA) for identification of Acinetobacter BSI isolates. METHODS: A total of 187 BSI isolates recovered at a university hospital in Korea between 2010 and 2012 were analyzed. The identification results obtained using VITEK MS and two automated systems were compared with those of rpoB sequencing. RESULTS: Of 187 isolates analyzed, 176 were identified to the species level by rpoB sequencing: the Acinetobacter baumannii group (ABG; 101 A. baumannii, 43 A. nosocomialis, 10 A. pittii isolates) was most commonly identified (82.4%), followed by Acinetobacter genomic species 13BJ/14TU (5.3%), A. ursingii (2.1%), A. soli (2.1%), A. bereziniae (1.1%), and A. junii (1.1%). Correct identification rates to the species group (ABG) level or the species level was comparable among the three systems (VITEK MS, 90.3%; VITEK 2, 89.2%; MicroScan, 86.9%). However, VITEK MS generated fewer misidentifications (0.6%) than VITEK 2 (10.8%) and MicroScan (13.1%) (P<0.001). In addition, VITEK MS demonstrated higher specificity (100%) for discrimination between ABG and non-ABG isolates than the other systems (both, 31.8%) (P<0.001). CONCLUSIONS: The VITEK MS system is superior to the VITEK 2 and MicroScan systems for identification of Acinetobacter BSI isolates, with fewer misidentifications and better discrimination between the ABG and non-ABG isolates.
Acinetobacter/*genetics/isolation & purification
;
Acinetobacter Infections/diagnosis/microbiology
;
Bacterial Proteins/genetics
;
Bacterial Typing Techniques/*instrumentation/*methods
;
Blood/*microbiology
;
DNA, Bacterial/*analysis/metabolism
;
Databases, Genetic
;
Humans
;
*Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
7.Influence of poly-β-1-6-N-acetylglucosamine on biofilm formation and drug resistance of Acinetobacter baumannii.
Chinese Journal of Burns 2015;31(1):45-47
Acinetobacter baumannii has emerged as one of the leading bacteria for nosocomial infections, especially in burn wards and ICUs. The bacteria can easily form biofilm and readily attach to abiotic and biotic surfaces, resulting in persistent biofilm-mediated infections. Being surrounded by self-produced extracellular polymeric substance (EPS), the microorganisms in biofilm can acquire protective property against detrimental environment and their tolerance toward antibiotics is increased. Poly-β-1-6-N-acetylglucosamine (PNAG), the common constituent of EPS in Acinetobacter baumannii, acts as the key virulence factor and plays a crucial role in biofilm formation process. This review describes the properties and functions of the PNAG and its influence on biofilm formation and drug resistance of Acinetobacter baumannii.
Acinetobacter Infections
;
drug therapy
;
Acinetobacter baumannii
;
drug effects
;
Anti-Bacterial Agents
;
therapeutic use
;
Biofilms
;
drug effects
;
growth & development
;
Burns
;
Cross Infection
;
Drug Resistance, Multiple, Bacterial
;
beta-Glucans
;
metabolism
8.Purification and characterization of a low-temperature hydroxylamine oxidase from heterotrophic nitrifier Acinetobacter sp. Y16.
Shu Mei ZHANG ; Wei Guang LI ; Duo Ying ZHANG ; Xiao Fei HUANG ; Wen QIN ; Chang Qing SHA
Biomedical and Environmental Sciences 2014;27(7):515-522
OBJECTIVETo purify a low-temperature hydroxylamine oxidase (HAO) from a heterotrophic nitrifying bacterium Acinetobacter sp. Y16 and investigate the enzyme property.
METHODSA HAO was purified by an anion-exchange and gel-filtration chromatography from strain Y16. The purity and molecular mass were determined by RP-HPLC and SDS-PAGE. The HAO activity was detected by monitoring the reduction of potassium ferricyanide using hydroxylamine as substrate and ferricyanide as electron acceptor. The partial amino acid sequence was determined by mass spectrometry.
RESULTSThe low-temperature HAO with a molecular mass of 61 kDa was purified from strain Y16 by an anion-exchange and gel-filtration chromatography. The enzyme exhibited an ability to oxidize hydroxylamine in wide temperature range (4-40 °C) in vitro using hydroxylamine as substrate and ferricyanide as electron acceptor. It was stable in the temperature range of 4 to 15 °C and pH range of 6.0 to 8.5 with less than 30% change in its activity. The optimal temperature and pH were 15 °C and 7.5, respectively. Three peptides were determined by mass spectrometry which were shown to be not identical to other reported HAOs.
CONCLUSIONThis is the first study to purify a low-temperature HAO from a heterotrophic nitrifier Acinetobacter sp. It differs from other reported HAOs in molecular mass and enzyme properties. The findings of the present study have suggested that the strain Y16 passes through a hydroxylamine-oxidizing process catalyzed by a low-temperature HAO for ammonium removal.
Acinetobacter ; enzymology ; genetics ; metabolism ; Amino Acid Sequence ; Cold Temperature ; Gene Expression Regulation, Bacterial ; physiology ; Gene Expression Regulation, Enzymologic ; physiology ; Hydrogen-Ion Concentration ; Oxidoreductases ; genetics ; metabolism ; Substrate Specificity
9.Epidemiological Characterizations of Class 1 Integrons from Multidrug-Resistant Acinetobacter Isolates in Daejeon, Korea.
Ji Youn SUNG ; Sun Hoe KOO ; Semi KIM ; Kye Chul KWON
Annals of Laboratory Medicine 2014;34(4):293-299
BACKGROUND: Multidrug-resistant (MDR) Acinetobacter spp. acquire antimicrobial agent-resistance genes via class 1 integrons. In this study, integrons were characterized to investigate the antimicrobial resistance mechanisms of MDR Acinetobacter isolates. In addition, the relationship between the integron type and integron-harboring bacterial species was analyzed by using epidemiological typing methods. METHODS: Fifty-six MDR Acinetobacter spp.-A. baumannii (N=30), A. bereziniae (N=4), A. nosocomialis (N=5), and A. pittii (N=17)-were isolated. The minimum inhibitory concentrations (MICs) were determined on the basis of the results of the Epsilometer test (Etest). PCR and DNA sequencing was performed to characterize the gene cassette arrays of class 1 integrons. Multilocus sequence typing (MLST) and repetitive extragenic palindromic sequence (REP)-PCR were performed for epidemiological typing. RESULTS: Class 1 integrons were detected in 50 (89.3%) of the 56 isolates, but no class 2 or 3 integron was found within the cohorts. The class 1 integrons were classified into 4 types: 2.3-kb type A (aacA4-catB8-aadA1), 3.0-kb type B (aacA4-blaI(MP-1)-bla(OXA-2)), 3.0-kb type C (bla(VIM-2)-aacA7-aadA1), and 1.8-kb type D (aac3-1-bla(OXA-2)-orfD). Type A was most prevalent and was detected only in A. baumannii isolates, except for one A. bereziniae isolate; however, type B was amplified in all Acinetobacter isolates except for A. baumannii isolates, regardless of clone and separation time of the bacteria. CONCLUSIONS: Although class 1 integron can be transferred horizontally between unrelated isolates belonging to different species, certain types of class 1 integrons tend to transfer horizontally and vertically among A. baumannii or non-baumannii Acinetobacter isolates.
Acinetobacter/drug effects/isolation & purification/*metabolism
;
Acinetobacter Infections/epidemiology/microbiology
;
Acinetobacter baumannii/drug effects/isolation & purification/metabolism
;
Anti-Bacterial Agents/pharmacology
;
DNA, Bacterial/chemistry/metabolism
;
Drug Resistance, Multiple, Bacterial
;
Humans
;
Integrons/*genetics
;
Microbial Sensitivity Tests
;
Multilocus Sequence Typing
;
Polymerase Chain Reaction
;
Republic of Korea
10.Correlation of Ciprofloxacin Resistance with the AdeABC Efflux System in Acinetobacter baumannii Clinical Isolates.
Abdollah ARDEBILI ; Abdolaziz Rastegar LARI ; Malihe TALEBI
Annals of Laboratory Medicine 2014;34(6):433-438
BACKGROUND: Acinetobacter baumannii is one of the most important pathogens capable of colonization in burn patients, leading to drug-resistant wound infections. This study evaluated the distribution of the AdeABC efflux system genes and their relationship to ciprofloxacin resistance in A. baumannii isolates collected from burn patients. METHODS: A total of 68 A. baumannii clinical strains were isolated from patients hospitalized in Motahari Burns Center in Tehran, Iran. Ciprofloxacin susceptibility was tested by the disk diffusion and agar dilution methods. PCR amplification of the adeRS-adeB drug efflux genes was performed for all resistant and susceptible isolates. To assess the role of the drug efflux pump in ciprofloxacin susceptibility, carbonyl cyanide 3-chlorophenylhydrazone (CCCP) was used as an efflux pump inhibitor (EPI). RESULTS: Approximately 95.6% of the Acinetobacter isolates were resistant to ciprofloxacin, with minimum inhibitory concentration (MIC) values ranging from 4 to > or =128 microg/mL. The susceptibility of 86.1% of the resistant isolates increased by factors of 2 to 64 in the presence of CCCP. All resistant isolates were positive for the adeRS-adeB genes, and 73.2% of them had mutations in the AdeRS regulatory system. CONCLUSIONS: The results showed that AdeABC genes are common in A. baumannii, which might be associated with ciprofloxacin non-susceptibility, as indicated by the observed linkage to the presence of the genes essential for the activity of the AdeABC, several single mutations occurring in the adeRS regulatory system, and an increase of ciprofloxacin susceptibility in the presence of a CCCP EPI.
ATP-Binding Cassette Transporters/antagonists & inhibitors/genetics/*metabolism
;
Acinetobacter Infections/diagnosis/microbiology
;
Acinetobacter baumannii/*drug effects/genetics/isolation & purification
;
Anti-Bacterial Agents/*pharmacology
;
Bacterial Proteins/antagonists & inhibitors/genetics/*metabolism
;
Base Sequence
;
Ciprofloxacin/*pharmacology
;
DNA, Bacterial/chemistry/genetics/metabolism
;
Drug Resistance, Bacterial
;
Humans
;
Hydrazones/pharmacology
;
Microbial Sensitivity Tests
;
Mutation
;
Polymerase Chain Reaction

Result Analysis
Print
Save
E-mail