1.Preventive effect and mechanism of puerarin on rat models of disuse osteoporosis.
Kai LI ; Rong QIN ; Jia-le SHAO ; Yu-Hai GAO ; Jian ZHOU ; Ke-Ming CHEN
China Journal of Chinese Materia Medica 2019;44(3):535-540
To investigate the preventive effect and possible mechanism of puerarin(Pur) in rat model of disuse osteoporosis(DOP),thirty healthy Wistar female rats of 2 months old were randomly divided into control group(Control), hindlimb suspension group(HLS), and puerarin group(HLS+Pur) in hindlimb suspension, with 10 rats in each group. A disuse osteoporosis model was established by tail suspension method, and 15.4 mg·kg~(-1) puerarin suspension was administered to HLS+Pur group every day, and the same volume of distilled water was administered to Control group and HLS group respectively. After 28 days, the rats were sacrificed by abdominal aorta blood collection, the main organs of the rats were removed, and the bone tissues of the rats were dissected. The organ index of the rats was calculated and the histopathology of the organs was observed under microscope. Bone mineral density test and bone biomechanical experiment were performed. Bone histomorphometry results were observed after bone tissue sectioning, and serum biochemical markers of bone metabolism were determined. There was no significant difference in organ index between the groups. There was no obvious abnormality in the pathological examination of the organs. The results of bone mineral density showed that puerarin could significantly increase the bone density of the tibia and vertebrae caused by hindlimb suspension. The mechanical parameters experiments showed that puerarin could effectively increase the maximum load and elastic modulus of the tibia and vertebrae. Fluorescence labeling showed that the fluorosis interval increased and the bone formation increased during puerarin treatment. The VG staining results showed that compared with the HLS group, in the puerarin group, the number of trabecular bone increased, the thickness of the trabecular bone became thicker, and the bone separation became smaller, which greatly improved the bone microstructure after hindlinb suspension. In addition, serum biochemical indicators showed that puerarin could promote bone formation index bone calcium. The content of osteocalcin(OC) increased and inhibited the formation of tartrate-resistant acid phosphatase 5 b(TRACP 5 b). Puerarin has a preventive effect in the rat model of disuse osteoporosis and its effect is good, and its mechanism may be related to promoting bone formation and inhibiting bone resorption.
Animals
;
Bone Density
;
Female
;
Isoflavones
;
pharmacology
;
Osteocalcin
;
metabolism
;
Osteoporosis
;
drug therapy
;
Rats
;
Rats, Wistar
;
Tartrate-Resistant Acid Phosphatase
;
metabolism
2.Tetrabromobisphenol A Promotes the Osteoclastogenesis of RAW264.7 Cells Induced by Receptor Activator of NF-kappa B Ligand In Vitro
So Young PARK ; Eun Mi CHOI ; Kwang Sik SUH ; Hyun Sook KIM ; Sang Ouk CHIN ; Sang Youl RHEE ; Deog Yoon KIM ; Seungjoon OH ; Suk CHON
Journal of Korean Medical Science 2019;34(41):e267-
BACKGROUND: Tetrabromobisphenol A (TBBPA), one of the most widely used brominated flame-retardants, is a representative persistent organic pollutants group. Studies on TBBPA toxicity have been conducted using various target cells; however, few studies have investigated TBBPA toxicity in bone cells. Therefore, this study investigated the in vitro effects of TBBPA on osteoclasts, a cell type involved in bone metabolism. METHODS: RAW264.7 cells were cultured in medium containing 50 ng/mL receptor activator of nuclear factor kappa B ligand (RANKL) and varying concentrations of TBBPA. To evaluate the effects of TBBPA on the differentiation and function of osteoclasts, osteoclast-specific gene expression, tartrate-resistant acid phosphatase (TRAP) activity, bone resorbing activity, mitochondrial membrane potential (MMP) and mitochondrial superoxide were measured. RESULTS: The presence of 20 μM TBBPA significantly increased TRAP activity in RANKL-stimulated RAW264.7 cells, the bone resorbing activity of osteoclasts, and the gene expression of Akt2, nuclear factor of activated T-cells cytoplasmic 1, and chloride channel voltage-sensitive 7. However, TBBPA treatment caused no change in the expression of carbonic anhydrase II, cathepsin K, osteopetrosis-associated transmembrane protein 1, Src, extracellular signal-related kinase, GAB2, c-Fos, or matrix metalloproteinase 9. Furthermore, 20 μM TBBPA caused a significant decrease in MMP and a significant increase in mitochondrial superoxide production. CONCLUSION: This study suggests that TBBPA promotes osteoclast differentiation and activity. The mechanism of TBBPA-stimulated osteoclastogenesis might include increased expression of several genes involved in osteoclast differentiation and reactive oxygen species production.
Acid Phosphatase
;
Carbonic Anhydrase II
;
Cathepsin K
;
Chloride Channels
;
Cytoplasm
;
Gene Expression
;
In Vitro Techniques
;
Matrix Metalloproteinase 9
;
Membrane Potential, Mitochondrial
;
Metabolism
;
Osteoclasts
;
Phosphotransferases
;
RANK Ligand
;
Reactive Oxygen Species
;
Receptor Activator of Nuclear Factor-kappa B
;
Superoxides
;
T-Lymphocytes
3.Automatic detection and clinical application of semen biochemical markers.
National Journal of Andrology 2018;24(4):291-296
Human seminal plasma is rich in potential biological markers for male infertility and male reproductive system diseases, which have an application value in the diagnosis and treatment of male infertility. The methods for the detection of semen biochemical markers have been developed from the manual, semi-automatic to the present automatic means. The automatic detection of semen biochemical markers is known for its advantages of simple reagent composition and small amount of reagents for each test, simple setting of parameters, whole automatic procedure with few errors, short detection time contributive to batch detection and reduction of manpower cost, simple calibration and quality control procedure to ensure accurate and reliable results, output of results in the order of the samples in favor of clinical diagnosis and treatment, and open reagents applicable to various automatic biochemistry analyzers. At present, the automatic method is applied in the detection of such semen biochemical markers as seminal plasma total and neutral alpha-glucosidase, acid phosphatase, fructose, γ-glutamyl transpeptidase, zinc, citric acid, uric acid, superoxide dismutase and carnitine, sperm acrosin and lactate dehydrogenase C4, and semen free elastase, which can be used to evaluate the secretory functions of the epididymis, seminal vesicle and prostate, sperm acrosome and energy metabolism function, seminal plasma antioxidative function, and infection or silent infection in the male genital tract.
Acid Phosphatase
;
analysis
;
Biomarkers
;
analysis
;
Carnitine
;
analysis
;
Citric Acid
;
analysis
;
Epididymis
;
metabolism
;
Fructose
;
analysis
;
Humans
;
Infertility, Male
;
diagnosis
;
Isoenzymes
;
L-Lactate Dehydrogenase
;
Male
;
Prostate
;
metabolism
;
Semen
;
chemistry
;
Seminal Vesicles
;
Spermatozoa
;
chemistry
;
alpha-Glucosidases
;
analysis
;
gamma-Glutamyltransferase
;
analysis
4.Effect of isoflavone-enriched whole soy milk powder supplementation on bone metabolism in ovariectomized mice.
So Mi KIM ; Hyun Sook LEE ; Jae In JUNG ; Su Min LIM ; Ji Hoon LIM ; Wang Hyun HA ; Chang Lae JEON ; Jae Yong LEE ; Eun Ji KIM
Nutrition Research and Practice 2018;12(4):275-282
BACKGROUND/OBJECTIVE: There is intense interest in soy isoflavone as a hormone replacement therapy for the prevention of postmenopausal osteoporosis. A new kind of isoflavone-enriched whole soy milk powder (I-WSM) containing more isoflavones than conventional whole soy milk powder was recently developed. The aim of this study was to investigate the effects of I-WSM on bone metabolism in ovariectomized mice. MATERIALS/METHODS: Sixty female ICR mice individually underwent ovariectomy (OVX) or a sham operation, and were randomized into six groups of 10 animals each as follows: Sham, OVX, OVX with 2% I-WSM diet, OVX with 10% I-WSM diet, OVX with 20% I-WSM diet, and OVX with 20% WSM diet. After an 8-week treatment period, bone mineral density (BMD), calcium, alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) 5b, osteocalcin (OC), procollagen 1 N-terminal propeptide (P1NP), and osteoprotegenin (OPG) were analyzed. RESULTS: BMD was significantly lower in the OVX group compared to the Sham group but was significantly higher in OVX + 10% I-WSM and OVX + 20% I-WSM groups compared to the OVX group (P < 0.05). Serum calcium concentration significantly increased in the OVX + 10% and 20% I-WSM groups. Serum ALP levels were significantly lower in the OVX + 10% and 20% I-WSM groups compared to the other experimental groups (P < 0.05). OC was significantly reduced in the OVX group compared to the Sham group (P < 0.05), but a dose-dependent increase was observed in the OVX groups supplemented with I-WSM. P1NP and OPG levels were significantly reduced, while TRAP 5b level was significantly elevated in the OVX group compared with the Sham group, which was not affected by I-WSM (P < 0.05). CONCLUSIONS: This study suggests that I-WSM supplementation in OVX mice has the effect of preventing BMD reduction and promoting bone formation. Therefore, I-WSM can be used as an effective alternative to postmenopausal osteoporosis prevention.
Acid Phosphatase
;
Alkaline Phosphatase
;
Animals
;
Bone Density
;
Bone Remodeling
;
Calcium
;
Diet
;
Female
;
Functional Food
;
Hormone Replacement Therapy
;
Humans
;
Isoflavones
;
Metabolism*
;
Mice*
;
Mice, Inbred ICR
;
Osteocalcin
;
Osteogenesis
;
Osteoporosis, Postmenopausal
;
Ovariectomy
;
Procollagen
;
Soy Milk*
;
Soybeans
5.The Levels of Vitamin D, Vitamin D Receptor, Homocysteine and Complex B Vitamin in Children with Autism Spectrum Disorders.
Hatice ALTUN ; Ergül Belge KURUTAŞ ; Nilfer ŞAHIN ; Olcay GÜNGÖR ; Ebru FINDIKLI
Clinical Psychopharmacology and Neuroscience 2018;16(4):383-390
OBJECTIVE: Autism spectrum disorder (ASD) is a complex neurodevelopmental syndrome with an increasingly prevalent etiology, yet not fully understood. It has been thought that vitamin D, complex B vitamin levels and homocysteine are associated with environmental factors and are important in ASD. The aim of this study was to examine serum vitamin D, vitamin D receptor (VDR), homocysteine, vitamin B6, vitamin B12 and folate levels in ASD. METHODS: In this study, serum vitamin D and VDR, homocysteine, vitamins B6, B12 and folate levels were determined in 60 patients with ASD (aged 3 to 12 years) and in 45 age-gender matched healthy controls. In addition, calcium, phosphorus and alkaline phosphatase, which are associated with vitamin D metabolism, were measured from serum in both groups. ASD severity was evaluted by the Childhood Autism Rating Scale (CARS). RESULTS: Serum vitamin D and VDR were substantially reduced in patients with ASD in comparision to control group. However, homocysteine level was significantly higher and vitamin B6, vitamin B12 and folate were also reduced in patients with ASD. Total CARS score showed a positive association with homocysteine and a negative correlation with vitamins D, B6, B12, folate and VDR. CONCLUSION: This comprehensive study, which examines many parameters has shown that low serum levels of vitamins D, B6, B12, folate and VDR as well as high homocysteine are important in the etiopathogenesis of ASD. However, further studies are required to define the precise mechanism(s) of these parameters and their contributions to the etiology and treatment of ASD.
Alkaline Phosphatase
;
Autism Spectrum Disorder*
;
Autistic Disorder*
;
Calcium
;
Child*
;
Folic Acid
;
Homocysteine
;
Humans
;
Metabolism
;
Phosphorus
;
Receptors, Calcitriol*
;
Vitamin B 12
;
Vitamin B 6
;
Vitamin D*
;
Vitamins*
6.Bone Mineral Density and Physical Performance of Female Patients 27 Years or Longer after Surgery for Adolescent Idiopathic Scoliosis.
Tsutomu AKAZAWA ; Toshiaki KOTANI ; Tsuyoshi SAKUMA ; Takehide KATOGI ; Shohei MINAMI ; Hisateru NIKI ; Yoshiaki TORII ; Shigeta MORIOKA ; Sumihisa ORITA ; Kazuhide INAGE ; Kazuki FUJIMOTO ; Yasuhiro SHIGA ; Kazuhisa TAKAHASHI ; Seiji OHTORI
Asian Spine Journal 2017;11(5):780-786
STUDY DESIGN: Retrospective cohort study. PURPOSE: To assess bone mineral density (BMD) and bone metabolism ≥27 years after surgery in female patients who underwent spinal fusion for adolescent idiopathic scoliosis (AIS) during adolescence and to determine their associations with physical performance. OVERVIEW OF LITERATURE: There are no studies investigating postsurgical BMD in middle-aged AIS patients. METHODS: This study included 23 patients who provided informed consent among 229 female patients with AIS who underwent spinal fusion from 1968 until 1988. Average age at the time of observation was 48.8 years. BMD was measured at the left femoral neck, and the levels of two bone metabolism markers–procollagen type 1 N-terminal propeptide (P1NP) and tartrate-resistant acid phosphatase 5b (TRACP-5b)–were measured from blood samples. Physical performance was measured using grip strength, sit-ups, sit-and-reach, side step, and standing long jump. RESULTS: Mean BMD was 0.784 g/cm2. According to the World Health Organization diagnostic criteria, one subject (4.3%) had osteoporosis, whereas nine subjects (39.1%) had osteopenia. In patients with osteoporosis or osteopenia, P1NP and TRACP-5b levels were high, and BMD loss was because of high metabolic turnover. All calculated standard scores for physical performance were lower in the study cohort than in healthy individuals. There was a positive correlation between BMD and the standard score for grip strength, whereas there were weak positive correlations between BMD and the standard scores for side step and standing long jump. CONCLUSIONS: In female AIS patients who underwent spinal fusion in adolescence, 4.3% and 39.1% had osteoporosis and osteopenia, respectively, ≥27 years after surgery. Exercise performance of these patients was poor compared with the national standards. In these patients, increased physical activity should be encouraged to prevent BMD loss in middle age.
Acid Phosphatase
;
Adolescent*
;
Bone Density*
;
Bone Diseases, Metabolic
;
Cohort Studies
;
Female*
;
Femur Neck
;
Hand Strength
;
Humans
;
Informed Consent
;
Metabolism
;
Middle Aged
;
Motor Activity
;
Osteoporosis
;
Retrospective Studies
;
Scoliosis*
;
Spinal Fusion
;
World Health Organization
7.Bone turnover rate and bone formation/resorption balance during the early stage after switching from a bone resorption inhibitor to denosumab are predictive factors of bone mineral density change.
Osteoporosis and Sarcopenia 2017;3(1):45-52
OBJECTIVES: This study aimed to investigate the correlation between bone mineral density (BMD) and the turnover rate [√(MoMf²+ MoMr²), multiple of median formation (MoMf) was calculated as bone-specific alkaline phosphatase (BAP) value/18.6 and multiple of median resorption (MoMr) as tartrate-resistant acid phosphatase 5b (TRACP-5b) value/463] and the balance (MoMf/MoMr) and to compare differences in therapeutic effects evoked by differences in previous treatments. METHODS: In 51 osteoporotic women treated with bisphosphonates (BPs) or selective estrogen receptor modulators (SERMs), BMD was measured at 0, 24, and 48 weeks after denosumab administration. The values of BAP and TRACP-5b were measured at 0, 4, 12, 24, 36, and 48 weeks. RESULTS: The turnover rate decreased at week 4 and decreased further at week 12. The balance indicated a relative predominantly formative state at week 4. This balance became higher in the SERM group than in the BP group at week 4. A correlation was observed between the rate of BMD change and turnover rate at weeks 0 and 4. CONCLUSIONS: It is necessary to evaluate the turnover rate and balance to determine the therapeutic effect of denosumab, which induces dissociation between the trends in the bone turnover markers. Turnover rate and balance during the early stages of denosumab treatment may be predictive factors of BMD. When switching from bone resorption inhibitors to denosumab, it was necessary to consider the beginning values that were affected by the previous treatment. The state of relative anabolism is greater at 4 weeks when the previous treatment involved SERMs rather than BPs.
Acid Phosphatase
;
Alkaline Phosphatase
;
Bone Density Conservation Agents
;
Bone Density*
;
Bone Remodeling*
;
Bone Resorption*
;
Denosumab*
;
Diphosphonates
;
Female
;
Humans
;
Metabolism
;
Osteoporosis
;
Selective Estrogen Receptor Modulators
;
Therapeutic Uses
8.Effect of resveratrol on peak bone mass in growing rats.
Huirong XI ; Yuhai GAO ; Fangfang YANG ; Wenyuan LI ; Huiping MA ; Keming CHEN
Journal of Zhejiang University. Medical sciences 2017;46(6):578-584
Objective: To investigate the effect of resveratrol on peak bone mineral density and bone mass in growing rats. Methods: Thirty-six female healthy Wistar rats were randomly divided into control group, icariin group and resveratrol group with 12 rats in each group. Icariin (25 mg·kg-1·d-1), resveratrol (8.4 mg·kg-1·d-1) or equal volume of distilled water were given by gavage to icariin group, resveratrol group and control group, respectively. The rats were sacrificed after 12 weeks. The organ indexes were calculated and pathology sections were observed; the bone mineral density (BMD), bone biomechanics, serum bone metabolism index, and results of micro-CT scan were analyzed. Results: During the experiment, the body weight of rats showed an increasing trend and there was no significant difference among three groups (P0.05). There were no significant differences in organ index of vital organs and pathological changes among the groups (all P0.05). Compared with the control group, the whole body BMD, and the BMDs of femur and vertebrae in icariin and resveratrol groups were significantly increased after 12 weeks (all P<0.05). The maximum load values of femur and vertebrae, as well as elastic modulus of vertebrae in icariin and resveratrol groups were significantly higher than those in control group (P<0.05 or P<0.01). Micro-CT scan showed that the volumetric BMD, number of trabecular, trabecular thickness and bone volume/tissue volume of the cancellous bone in icariin and resveratrol groups were significantly higher and the trabecular separation was significantly lower than those in the control group (P<0.05 or P<0.01); while there was no significant difference in volumetric BMD of cortical bone for femur. The contents of osteocalcin in icariin and resveratrol groups were significantly higher than those in control group (all P<0.05), while the contents of tartarte-resistant acid phosphatase 5b (TRACP5b) were significantly lower than those in control group (all P<0.05).Conclusion: Resveratrol can inhibit bone resorption and enhance bone formation, so as to improve the peak bone mass and bone density, enhance bone strength and improve the microstructure of bone tissue in young rats.
Animals
;
Bone Density
;
drug effects
;
Bone and Bones
;
diagnostic imaging
;
drug effects
;
Female
;
Femur
;
drug effects
;
Osteocalcin
;
genetics
;
metabolism
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Rats, Wistar
;
Resveratrol
;
pharmacology
;
Tartrate-Resistant Acid Phosphatase
;
genetics
;
metabolism
9.The Influence of the Type of Continuous Exercise Stress Applied during Growth Periods on Bone Metabolism and Osteogenesis.
Sangun LEE ; Takao SUZUKI ; Hiromi IZAWA ; Atsuko SATOH
Journal of Bone Metabolism 2016;23(3):157-164
BACKGROUND: In this study, we examined the influence of exercise loading characteristics on bone metabolic responses and bone morphology in the growth phase and adulthood. METHODS: Running exercise (RUN) and jumping exercise (JUM) were used for the exercise loading in 28-day-old male Wistar rats. Bone metabolism was measured by blood osteocalcin (OC) and tartrate-resistant acid phosphatase (TRACP) levels. For bone morphology, the maximum bone length, bone weight, and bone strength of the femur and tibia were measured. RESULTS: A pre- and post-exercise loading comparison in the growth phase showed significantly increased OC levels in the RUN and JUM groups and significantly decreased TRACP levels in the JUM group. On the other hand, a pre- and post-exercise loading comparison in adulthood showed significantly decreased TRACP levels in the RUN and JUM groups. Femur lengths were significantly shorter in the RUN and JUM groups than in the control (CON) group, while bone weight was significantly greater in the JUM group than in the CON group. CONCLUSIONS: Exercise loading activates OC levels in the growth phase and suppresses TRACP levels in adulthood. On the other hand, these results suggest that excessive exercise loading may suppress bone length.
Acid Phosphatase
;
Femur
;
Hand
;
Humans
;
Male
;
Metabolism*
;
Osteoblasts
;
Osteocalcin
;
Osteoclasts
;
Osteogenesis*
;
Rats, Wistar
;
Running
;
Tibia
10.Stimulating Effect of a Novel Synthesized Sulfonamido-Based Gallate ZXHA-TC on Primary Osteoblasts.
Pan JIN ; Liang LIAO ; Xiao LIN ; Qinggong GUO ; Cuiwu LIN ; Huayu WU ; Li ZHENG ; Jinmin ZHAO
Yonsei Medical Journal 2015;56(3):760-771
PURPOSE: This study is intended to investigate the effects of plants or plant-derived antioxidants on prevention of osteoporosis through the maintenance of reactive oxygen species (ROS) at a favorable level. MATERIALS AND METHODS: In this study, a novel antioxidant, namely 3,4,5-Trihydroxy-N-[4-(5-hydroxy-6-methoxy-pyrimidin-4-ylsulfamoyl)-phenyl]-benzamide (ZXHA-TC) was synthesized from gallic acid and sulfadimoxine. Its effect on osteoblast metabolism was investigated via the detection of cell proliferation, cell viability, production of ROS, and expression of osteogenic-specific genes including runt-related transcription factor 2 (RUNX2), bone sialoprotein (BSP), osteocalcin (OCN), alpha-1 type I collagen (COL1A1), and osteogenic-related proteins after treatment for 2, 4, and 6 days respectively. RESULTS: The results showed that ZXHA-TC has a stimulating effect on the proliferation and osteogenic differentiation of primary osteoblasts by promoting cell proliferation, cell viability, and the expression of genes BSP and OCN. Productions of bone matrix and mineralization were also increased by ZXHA-TC treatment as a result of up-regulation of COL1A1 and alkaline phosphatase (ALP) at the early stage and down-regulation of both genes subsequently. A range of 6.25x10(-3) microg/mL to 6.25x10(-1) microg/mL is the recommended dose for ZXHA-TC, within which 6.25x10(-2) microg/mL showed the best performance. CONCLUSION: This study may hold promise for the development of a novel agent for the treatment of osteoporosis.
Alkaline Phosphatase/metabolism
;
Bone Morphogenetic Proteins/pharmacology
;
Cell Differentiation/*drug effects
;
Cell Proliferation/*drug effects
;
Collagen Type I/genetics
;
Core Binding Factor Alpha 1 Subunit
;
Down-Regulation
;
Gallic Acid
;
Osteoblasts/*drug effects
;
Osteocalcin/metabolism
;
Osteogenesis/drug effects
;
Osteoporosis/*prevention & control
;
Reactive Oxygen Species
;
Up-Regulation

Result Analysis
Print
Save
E-mail