1.Xiaoyao San, a Chinese herbal formula, ameliorates depression-like behavior in mice through the AdipoR1/AMPK/ACC pathway in hypothalamus.
Kai-Rui TANG ; Xiao-Wei MO ; Xing-Yi ZHOU ; Yue-Yue CHEN ; Dong-Dong LIU ; Liang-Liang HE ; Qing-Yu MA ; Xiao-Juan LI ; Jia-Xu CHEN
Journal of Integrative Medicine 2022;20(5):442-452
OBJECTIVE:
Depression and metabolic disorders have overlapping psychosocial and pathophysiological causes. Current research is focused on the possible role of adiponectin in regulating common biological mechanisms. Xiaoyao San (XYS), a classic Chinese medicine compound, has been widely used in the treatment of depression and can alleviate metabolic disorders such as lipid or glucose metabolism disorders. However, the ability of XYS to ameliorate depression-like behavior as well as metabolic dysfunction in mice and the underlying mechanisms are unclear.
METHODS:
An in vivo animal model of depression was established by chronic social defeat stress (CSDS). XYS and fluoxetine were administered by gavage to the drug intervention group. Depression-like behaviors were analyzed by the social interaction test, open field test, forced swim test, and elevated plus maze test. Glucose levels were measured using the oral glucose tolerance test. The involvement of certain molecules was validated by immunofluorescence, histopathology, and Western blotting. In vitro, hypothalamic primary neurons were exposed to high glucose to induce neuronal damage, and the neuroprotective effect of XYS was evaluated by cell counting kit-8 assay. Immunofluorescence and Western blotting were used to evaluate the influences of XYS on adiponectin receptor 1 (AdipoR1), adenosine 5'-monophosphate-activated protein kinase (AMPK), acetyl-coenzyme A carboxylase (ACC) and other related proteins.
RESULTS:
XYS ameliorated CSDS-induced depression-like behaviors and glucose tolerance impairment in mice and increased the level of serum adiponectin. XYS also restored Nissl bodies in hypothalamic neurons in mice that exhibited depression-like behaviors and decreased the degree of neuronal morphological damage. In vivo and in vitro studies indicated that XYS increased the expression of AdipoR1 in hypothalamic neurons.
CONCLUSION
Adiponectin may be a key regulator linking depression and metabolic disorders; regulation of the hypothalamic AdipoR1/AMPK/ACC pathway plays an important role in treatment of depression by XYS.
AMP-Activated Protein Kinases/metabolism*
;
Acetyl-CoA Carboxylase/metabolism*
;
Adiponectin/metabolism*
;
Animals
;
Antidepressive Agents/pharmacology*
;
China
;
Depression/drug therapy*
;
Disease Models, Animal
;
Drugs, Chinese Herbal/therapeutic use*
;
Glucose
;
Hypothalamus/metabolism*
;
Mice
;
Receptors, Adiponectin/metabolism*
2.Research on the mechanism of hypoxia promoting the migration of lung adenocarcinoma A549 cells.
Jia-Hao JIN ; Bao-Sheng ZHAO ; Yu-Zhen LIU
Chinese Journal of Applied Physiology 2022;38(1):68-74
Objective: To investigate the mechanism that hypoxia promotes the migration of lung adenocarcinoma A549 cells. Methods: A549 cells were cultured and cells that knockdown of acetyl-CoA carboxylase 1 (ACC1) were obtained by transfection with lentivirus, and cells that knockdown of sterol regulatory element-binding proteins-1 (SREBP-1) were obtained by treated with si-RNA. A549 cells were treated with hypoxia combined with hypoxia inducible factor-1α (HIF-1α) inhibitor PX-478 (25 μmol); Hypoxia combined with linoleic acid (LA) (20 μmol) treated A549 cells with ACC1 knockdown, and A549 cells with SREBP-1 knockdown were treated by hypoxia. Transwell migration assay was used to detect cell migration. Western blot was conducted to detect HIF-1α, ACC1 and epithelial mesenchymal transition (EMT) related proteins, Vimentin, E-Cadherin and SREBP-1; Real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) was performed to detect the changes of ACC1 and SREBP-1 mRNA in A549 cells after hypoxia and HIF-1α inhibitor PX-478 (25 μmol) treatment. Each experiment was repeated three times. Results: Compared with the normoxic control group, hypoxia promoted the migration of A549 cells (P<0.01), and up-regulated the expressions of ACC1, HIF-1α (all P<0.01) and SREBP-1 (P<0.05). PX-478 (25 μmol) inhibited the migration of A549 cells induced by hypoxia and down-regulated the expression of SREBP-1 (all P<0.05). ACC1 mRNA and SREBP-1 mRNA levels were increased after hypoxia treatment of A549 cells (all P<0.05). The levels of ACC1 mRNA and SREBP-1 mRNA were decreased after A549 cells treated with hypoxia combined with PX-478 (25 μmol) for 24 h (P<0.05, P<0.01). Knockdown of SREBP-1 in A549 cells was obtained by transfection with si-RNA. Transwell migration assay showed the number of cell migration in si-SREBP-1 group was less than that in normoxia control group (P<0.01). The si-SREBP-1 group and the si-NC group were treated with hypoxia. Compared with the control group, the number of cell migration in the si-SREBP-1 group was decreased (P<0.01), however, the difference was not statistically significant compared with the normoxia si-SREBP-1 group (P>0.05). Western blot showed that the expression of ACC1 in the si-SREBP-1 group was lower than that in the control group (P<0.01). Compared with the control group, the expression of ACC1 was decreased after si-SREBP-1 group treated with hypoxia (P<0.01). Knockdown of ACC1 inhibited the migration of A549 cells (P<0.05). After knockdown of ACC1, the migration number of A549 cells under normoxia and 5% O2 conditions had no significant difference (P>0.05). Application of LA under hypoxia condition rescued ACC1-knockdown induced inhibitory effect on hypoxia-promoted A549 cell migration (P<0.05). Conclusion: Hypoxia promotes migration of lung adenocarcinoma A549 cells by regulating fatty acid metabolism through HIF-1α/SREBP-1/ACC1 pathway.
A549 Cells
;
Acetyl-CoA Carboxylase
;
Adenocarcinoma of Lung
;
Cell Hypoxia/physiology*
;
Cell Line, Tumor
;
Humans
;
Hypoxia
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
Lung Neoplasms
;
RNA/metabolism*
;
RNA, Messenger/metabolism*
;
Sterol Regulatory Element Binding Protein 1/metabolism*
3.Medium- and long-chain triglyceride propofol reduces the activity of acetyl-coenzyme A carboxylase in hepatic lipid metabolism in HepG2 and Huh7 cells
Li yuan WANG ; Jing WU ; Ya fen GAO ; Duo mao LIN ; Jun MA
The Korean Journal of Physiology and Pharmacology 2020;24(1):19-26
Medium- and long-chain triglyceride (MCT/LCT) propofol is widely used as an intravenous anesthetic, especially in the intensive care unit. The present study aimed to assess whether MCT/LCT propofol is safe in the hyperlipidemic population for long-term use. Free fatty acids (FFAs) were used to establish high-fat stimulation of HepG2 and Huh7 cells. Subsequently, these cells were treated with propofol at the concentration of 0, 4, or 8 µg/ml for 24 and 48 h. The results indicated that the cell viability was notably decreased when the cells were stimulated with 2 mmol/L FFAs and treated with 12 µg/ml MCT/LCT propofol. Accordingly, we chose 2 mmol/L FFAs along with 4 and 8 µg/ml MCT/LCT propofol for the subsequent experiments. Four and 8 µg/ml MCT/LCT propofol inhibited FFA-induced lipid accumulation in the cells and significantly reversed acetyl coenzyme A carboxylase (ACC) activity. In addition, MCT/LCT propofol not only significantly promoted the phosphorylation of AMPK and ACC, but also reversed the FFA-induced decreased phosphorylation of AMPK and ACC. In conclusion, MCT/LCT propofol reverses the negative effects caused by FFAs in HepG2 and Huh7 cells, indicating that MCT/LCT propofol might positively regulate lipid metabolism.
Acetyl-CoA Carboxylase
;
AMP-Activated Protein Kinases
;
Cell Survival
;
Fatty Acids, Nonesterified
;
Hepatocytes
;
Intensive Care Units
;
Lipid Metabolism
;
Liver
;
Metabolism
;
Phosphorylation
;
Propofol
;
Triglycerides
4.Red pepper seed water extract inhibits preadipocyte differentiation and induces mature adipocyte apoptosis in 3T3-L1 cells.
Hwa Jin KIM ; Mi Kyoung YOU ; Young Hyun LEE ; Hyun Jung KIM ; Deepak ADHIKARI ; Hyeon A KIM
Nutrition Research and Practice 2018;12(6):494-502
BACKGROUND/OBJECTIVES: Reducing the number of adipocytes by inducing apoptosis of mature adipocytes as well as suppressing differentiation of preadipocytes plays an important role in preventing obesity. This study examines the anti-adipogenic and pro-apoptotic effect of red pepper seed water extract (RPS) prepared at 4℃ (RPS4) in 3T3-L1 cells. MATERIALS/METHODS: Effect of RPS4 or its fractions on lipid accumulation was determined in 3T3-L1 cells using oil red O (ORO) staining. The expressions of AMP-activated protein kinase (AMPK) and adipogenic associated proteins [peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding proteins α (C/EBP α), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC)] were measured in 3T3-L1 cells treated with RPS4. Apoptosis and the expression of Akt and Bcl-2 family proteins [B-cell lymphoma 2 (Bcl-2), Bcl-2-associated death promoter (Bad), Bcl-2 like protein 4 (Bax), Bal-2 homologous antagonist/killer (Bak)] were measured in mature 3T3-L1 cells treated with RPS4. RESULTS: Treatment of RPS4 (0–75 µg/mL) or its fractions (0–50 µg/mL) for 24 h did not have an apparent cytotoxicity on pre and mature 3T3-L1 cells. RPS4 significantly suppressed differentiation and cellular lipid accumulation by increasing the phosphorylation of AMPK and reducing the expression of PPAR-γ, C/EBP α, SREBP-1c, FAS, and ACC. In addition, all fractions except ethyl acetate fraction significantly suppressed cellular lipid accumulation. RPS4 induced the apoptosis of mature adipocytes by hypophosphorylating Akt, increasing the expression of the pro-apoptotic proteins, Bak, Bax, and Bad, and reducing the expression of the anti-apoptotic proteins, Bcl-2 and p-Bad. CONCLUSIONS: These finding suggest that RPS4 can reduce the numbers as well as the size of adipocytes and might useful for preventing and treating obesity.
3T3-L1 Cells*
;
Acetyl-CoA Carboxylase
;
Adipocytes*
;
Adipogenesis
;
AMP-Activated Protein Kinases
;
Apoptosis Regulatory Proteins
;
Apoptosis*
;
Capsicum*
;
Humans
;
Lipid Metabolism
;
Lymphoma
;
Obesity
;
Phosphorylation
;
Sterol Regulatory Element Binding Protein 1
;
Water*
5.Histone deacetylase inhibition attenuates hepatic steatosis in rats with experimental Cushing's syndrome.
Mina KIM ; Hae Ahm LEE ; Hyun Min CHO ; Seol Hee KANG ; Eunjo LEE ; In Kyeom KIM
The Korean Journal of Physiology and Pharmacology 2018;22(1):23-33
Cushing's syndrome (CS) is a collection of symptoms caused by prolonged exposure to excess cortisol. Chronically elevated glucocorticoid (GC) levels contribute to hepatic steatosis. We hypothesized that histone deacetylase inhibitors (HDACi) could attenuate hepatic steatosis through glucocorticoid receptor (GR) acetylation in experimental CS. To induce CS, we administered adrenocorticotropic hormone (ACTH; 40 ng/kg/day) to Sprague-Dawley rats by subcutaneous infusion with osmotic mini-pumps. We administered the HDACi, sodium valproate (VPA; 0.71% w/v), in the drinking water. Treatment with the HDACi decreased steatosis and the expression of lipogenic genes in the livers of CS rats. The enrichment of GR at the promoters of the lipogenic genes, such as acetyl-CoA carboxylase (Acc), fatty acid synthase (Fasn), and sterol regulatory element binding protein 1c (Srebp1c), was markedly decreased by VPA. Pan-HDACi and an HDAC class I-specific inhibitor, but not an HDAC class II a-specific inhibitor, attenuated dexamethasone (DEX)-induced lipogenesis in HepG2 cells. The transcriptional activity of Fasn was decreased by pretreatment with VPA. In addition, pretreatment with VPA decreased DEX-induced binding of GR to the glucocorticoid response element (GRE). Treatment with VPA increased the acetylation of GR in ACTH-infused rats and DEX-induced HepG2 cells. Taken together, these results indicate that HDAC inhibition attenuates hepatic steatosis hrough GR acetylation in experimental CS.
Acetyl-CoA Carboxylase
;
Acetylation
;
Adrenocorticotropic Hormone
;
Animals
;
Cushing Syndrome*
;
Dexamethasone
;
Drinking Water
;
Hep G2 Cells
;
Histone Deacetylase Inhibitors
;
Histone Deacetylases*
;
Histones*
;
Hydrocortisone
;
Infusions, Subcutaneous
;
Lipogenesis
;
Liver
;
Rats*
;
Rats, Sprague-Dawley
;
Receptors, Glucocorticoid
;
Response Elements
;
Sterol Regulatory Element Binding Protein 1
;
Valproic Acid
6.The effects of Brassica juncea L. leaf extract on obesity and lipid profiles of rats fed a high-fat/high-cholesterol diet.
Jae Joon LEE ; Hyun A KIM ; Joomin LEE
Nutrition Research and Practice 2018;12(4):298-306
BACKGROUND/OBJECTIVES: Obesity is a global health problem of significant importance which increases mortality. In place of anti-obesity drugs, natural products are being developed as alternative therapeutic materials. In this study, we investigated the effect of Brassica juncea L. leaf extract (BLE) on fat deposition and lipid profiles in high-fat, high-cholesterol diet (HFC)-induced obese rats. MATERIALS/METHODS: Male Sprague-Dawley rats were divided into four groups (n = 8 per group) according to diet: normal diet group (ND), high-fat/high-cholesterol diet group (HFC), HFC with 3% BLE diet group (HFC-A1), and HFC with 5% BLE diet group (HFC-A2). Each group was fed for 6 weeks. Rat body and adipose tissue weights, serum biochemical parameters, and tissue lipid contents were determined. The expression levels of mRNA and proteins involved in lipid and cholesterol metabolism were determined by reverse transcription polymerase chain reaction and western blot analysis, respectively. RESULTS: The HFC-A2 group showed significantly lower body weight gain and food efficiency ratio than the HFC group. BLE supplementation caused mesenteric, epididymal, and total adipose tissue weights to decrease. The serum levels of triglyceride, total cholesterol, and low-density lipoprotein cholesterol were significantly reduced, and high-density lipoprotein cholesterol was significantly increased in rats fed BLE. These results were related to lower glucose-6-phosphate dehydrogenase, acetyl-coA carboxylase, and fatty acid synthase mRNA expression, and to higher expression of the cholesterol 7α-hydroxylase and low density lipoprotein-receptor, as well as increased protein levels of peroxisome proliferator-activated receptor α. Histological analysis of the liver revealed decreased lipid droplets in HFC rats treated with BLE. CONCLUSIONS: Supplementation of HFC with 3% or 5% BLE inhibited body fat accumulation, improved lipid profiles, and modulated lipogenesis- and cholesterol metabolism-related gene and protein expression.
Acetyl-CoA Carboxylase
;
Adipose Tissue
;
Animals
;
Anti-Obesity Agents
;
Biological Products
;
Blotting, Western
;
Body Weight
;
Brassica*
;
Cholesterol
;
Diet*
;
Diet, High-Fat
;
Global Health
;
Glucosephosphate Dehydrogenase
;
Humans
;
Lipid Droplets
;
Lipoproteins
;
Liver
;
Male
;
Metabolism
;
Mortality
;
Mustard Plant*
;
Obesity*
;
Peroxisomes
;
Polymerase Chain Reaction
;
Rats*
;
Rats, Sprague-Dawley
;
Reverse Transcription
;
RNA, Messenger
;
Triglycerides
;
Weights and Measures
7.Effects of fermented blueberry liquid in high-fat diet-induced obese C57BL/6J mice.
Jong Hee JEON ; Bohkyung KIM ; Eun Gyung MUN ; Youn Soo CHA ; Ok Kyeong YU
Journal of Nutrition and Health 2017;50(6):543-551
PURPOSE: The objective of the present study was to determine whether fermentation can increase the protective effects of blueberry liquid in a high-fat diet-induced obese mice model. METHODS: Male C57BL/6J mice were fed a high-fat diet (HD, 60% fat, w/w,), HD supplemented with 10 ml/kg BW/day of blueberry liquid (BHD, blueberry high-fat diet), or HD supplemented with 10 ml/kg BW/day of fermented blueberry liquid (FBHD, fermented blueberry high-fat diet) for 10 weeks. RESULTS: There were significant decreases in the body, epididymal adipose tissue, and liver weights of blueberry-fed groups compared to HD, whereas there were no significant differences in food intake among the groups. Furthermore, blueberry liquid groups, especially fermented blueberry liquid, significantly attenuated the contents of hepatic triglycerides and total cholesterol induced by HD. Serum LDL-cholesterol was significantly lower in the BHD and FBHD-fed groups, whereas FBHD significantly increased the serum HDL-cholesterol level compared to the control. Concentrations of aspartate transaminase, alanine transaminase, and leptins in serum were also reduced by blueberry liquid supplementation. The mRNA expression of hepatic acetyl CoA carboxylase was significantly reduced in both the BHD and FBHD groups compared to HD. Furthermore, FBHD altered the mRNA expression level of hepatic lipolysis genes. CONCLUSION: In conclusion, these results suggest that blueberry, especially fermented blueberry liquid, may improve obesity-related abnormalities.
Acetyl-CoA Carboxylase
;
Adipose Tissue
;
Alanine Transaminase
;
Animals
;
Aspartate Aminotransferases
;
Blueberry Plant*
;
Cholesterol
;
Diet, High-Fat
;
Eating
;
Fermentation
;
Humans
;
Leptin
;
Lipolysis
;
Liver
;
Male
;
Mice*
;
Mice, Obese
;
RNA, Messenger
;
Triglycerides
;
Weights and Measures
8.Identification of AMPK activator from twelve pure compounds isolated from Aralia Taibaiensis: implication in antihyperglycemic and hypolipidemic activities.
Yuwen LI ; Jongsun PARK ; Yin WU ; Jia CUI ; Na JIA ; Miaomiao XI ; Aidong WEN
The Korean Journal of Physiology and Pharmacology 2017;21(3):279-286
The root bark extract of Aralia taibaiensis is used traditionally for the treatment of diabetes mellitus in China. The total saponin extracted from Aralia Taibaiensis (sAT) has effective combined antihyperglycemic and hypolipidemic activities in experimental type 2 diabetic rats. However, the active compounds have not yet been fully investigated. In the present study, we examined effects of twelve triterpenoid saponins on AMP-activated protein kinase (AMPK) activation, and found that compound 28-O-β-D-glucopyranosyl ester (AT12) significantly increased phosphorylation of AMPK and Acetyl-CoA carboxylase (ACC). AT12 effectively decreased blood glucose, triglyceride (TG), free fatty acid (FFA) and low density lipoprotein-cholesterol (LDL-C) levels in the rat model of type 2 diabetes mellitus (T2DM). The mechanism by which AT12 activated AMPK was subsequently investigated. Intracellular ATP level and oxygen consumption were significantly reduced by AT12 treatment. The findings suggested AT12 was a novel AMPK activator, and could be useful for the treatment of metabolic diseases.
Acetyl-CoA Carboxylase
;
Adenosine Triphosphate
;
AMP-Activated Protein Kinases*
;
Animals
;
Aralia*
;
Blood Glucose
;
China
;
Diabetes Mellitus
;
Diabetes Mellitus, Type 2
;
Metabolic Diseases
;
Models, Animal
;
Oxygen Consumption
;
Phosphorylation
;
Rats
;
Saponins
;
Triglycerides
9.Clinical Characteristics of Patients after Aryloxyphenoxy Propionate Herbicide Ingestion.
Junyeong LIM ; Jeongmi MOON ; Byeongjo CHUN
Journal of The Korean Society of Clinical Toxicology 2016;14(2):71-77
PURPOSE: No studies have been conducted to investigate the acute toxicity of aryloxyphenoxypropionate herbicides in humans following ingestion. Therefore, this study was conducted to investigate the clinical characteristics of aryloxyphenoxypropionate herbicide poisoning and provide guidance for physicians treating patients who have ingested these types of herbicides. METHODS: A retrospective observational case series was conducted using ten patients with history of aryloxyphenoxy propionate herbicide. Data were collected for clinical manifestation, management and final outcome. RESULTS: The most common symptoms were gastrointestinal irritation and an altered mental state (Glasgow Coma Scale<15). An elevated lactate level was a common laboratory abnormality, and prolonged QTc interval was commonly observed. These clinical features normalized within one day of supportive treatment. CONCLUSION: The acute toxicity of aryloxyphenoxypropionate herbicides in humans is manageable with supportive treatment. However, physicians should take into account depressed consciousness, the possibility of arrhythmia, and an elevated lactate level when planning their treatment strategy.
Acetyl-CoA Carboxylase
;
Arrhythmias, Cardiac
;
Coma
;
Consciousness
;
Diethylpropion*
;
Eating*
;
Herbicides
;
Humans
;
Lactic Acid
;
Poisoning
;
Retrospective Studies
10.Anti-diabetic activities of catalpol in db/db mice.
Qinwen BAO ; Xiaozhu SHEN ; Li QIAN ; Chen GONG ; Maoxiao NIE ; Yan DONG
The Korean Journal of Physiology and Pharmacology 2016;20(2):153-160
The objective was to investigate the hypoglycemic action of catalpol in spontaneous diabetes db/db mice. 40 db/db mice were randomly divided into fi ve groups: model control gourp; db/db plus catalpol 40, 80, 120 mg/kg body wt. groups and db/db plus metformin 250 mg/kg group. Age-matched db/m mice were selected as normal control group. The mice were administered with corresponding drugs or solvent by gavage for 4 weeks. The oral glucose tolerance test was carried out at the end of 3rd week. After 4 weeks of treatment, the concentrations of fasting blood glucose (FBG), glycated serum protein (GSP), insulin (INS), triglyceride (TG), total cholesterol (TC) and adiponection (APN) in serum were detected. The protein expressions of phosphorylation-AMPKalpha1/2 in liver, phosphorylation-AMPKalpha1/2 and glucose transporter-4 (GLUT-4) in skeletal muscle and adipose tissues were detected by western blot. Real time RT-PCR was used to detect the mRNA expressions of acetyl-CoA carboxylase (ACC) and Hydroxymethyl glutaric acid acyl CoA reductase (HMGCR) in liver. Our results showed that catalpol could significantly improve the insulin resistance, decrease the serum concentrations of INS, GSP, TG, and TC. The concentrations of APN in serum, the protein expression of phosphorylation-AMPKalpha1/2 in liver, phosphorylation-AMPKalpha1/2 and GLUT-4 in peripheral tissue were increased. Catalpol could also down regulate the mRNA expressions of ACC and HMGCR in liver. In conclusion, catalpol ameliorates diabetes in db/db mice. It has benefi t eff ects against lipid/glucose metabolism disorder and insulin resistance. The mechanism may be related to up-regulating the expression of phosphorylation-AMPKalpha1/2.
Acetyl-CoA Carboxylase
;
Acyl Coenzyme A
;
AMP-Activated Protein Kinases
;
Animals
;
Blood Glucose
;
Blotting, Western
;
Cholesterol
;
Fasting
;
Glucose
;
Glucose Tolerance Test
;
Insulin
;
Insulin Resistance
;
Liver
;
Metabolism
;
Metformin
;
Mice*
;
Muscle, Skeletal
;
Oxidoreductases
;
RNA, Messenger
;
Triglycerides

Result Analysis
Print
Save
E-mail