1.Research on the mechanism of hypoxia promoting the migration of lung adenocarcinoma A549 cells.
Jia-Hao JIN ; Bao-Sheng ZHAO ; Yu-Zhen LIU
Chinese Journal of Applied Physiology 2022;38(1):68-74
Objective: To investigate the mechanism that hypoxia promotes the migration of lung adenocarcinoma A549 cells. Methods: A549 cells were cultured and cells that knockdown of acetyl-CoA carboxylase 1 (ACC1) were obtained by transfection with lentivirus, and cells that knockdown of sterol regulatory element-binding proteins-1 (SREBP-1) were obtained by treated with si-RNA. A549 cells were treated with hypoxia combined with hypoxia inducible factor-1α (HIF-1α) inhibitor PX-478 (25 μmol); Hypoxia combined with linoleic acid (LA) (20 μmol) treated A549 cells with ACC1 knockdown, and A549 cells with SREBP-1 knockdown were treated by hypoxia. Transwell migration assay was used to detect cell migration. Western blot was conducted to detect HIF-1α, ACC1 and epithelial mesenchymal transition (EMT) related proteins, Vimentin, E-Cadherin and SREBP-1; Real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) was performed to detect the changes of ACC1 and SREBP-1 mRNA in A549 cells after hypoxia and HIF-1α inhibitor PX-478 (25 μmol) treatment. Each experiment was repeated three times. Results: Compared with the normoxic control group, hypoxia promoted the migration of A549 cells (P<0.01), and up-regulated the expressions of ACC1, HIF-1α (all P<0.01) and SREBP-1 (P<0.05). PX-478 (25 μmol) inhibited the migration of A549 cells induced by hypoxia and down-regulated the expression of SREBP-1 (all P<0.05). ACC1 mRNA and SREBP-1 mRNA levels were increased after hypoxia treatment of A549 cells (all P<0.05). The levels of ACC1 mRNA and SREBP-1 mRNA were decreased after A549 cells treated with hypoxia combined with PX-478 (25 μmol) for 24 h (P<0.05, P<0.01). Knockdown of SREBP-1 in A549 cells was obtained by transfection with si-RNA. Transwell migration assay showed the number of cell migration in si-SREBP-1 group was less than that in normoxia control group (P<0.01). The si-SREBP-1 group and the si-NC group were treated with hypoxia. Compared with the control group, the number of cell migration in the si-SREBP-1 group was decreased (P<0.01), however, the difference was not statistically significant compared with the normoxia si-SREBP-1 group (P>0.05). Western blot showed that the expression of ACC1 in the si-SREBP-1 group was lower than that in the control group (P<0.01). Compared with the control group, the expression of ACC1 was decreased after si-SREBP-1 group treated with hypoxia (P<0.01). Knockdown of ACC1 inhibited the migration of A549 cells (P<0.05). After knockdown of ACC1, the migration number of A549 cells under normoxia and 5% O2 conditions had no significant difference (P>0.05). Application of LA under hypoxia condition rescued ACC1-knockdown induced inhibitory effect on hypoxia-promoted A549 cell migration (P<0.05). Conclusion: Hypoxia promotes migration of lung adenocarcinoma A549 cells by regulating fatty acid metabolism through HIF-1α/SREBP-1/ACC1 pathway.
A549 Cells
;
Acetyl-CoA Carboxylase
;
Adenocarcinoma of Lung
;
Cell Hypoxia/physiology*
;
Cell Line, Tumor
;
Humans
;
Hypoxia
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
Lung Neoplasms
;
RNA/metabolism*
;
RNA, Messenger/metabolism*
;
Sterol Regulatory Element Binding Protein 1/metabolism*
2.Xiaoyao San, a Chinese herbal formula, ameliorates depression-like behavior in mice through the AdipoR1/AMPK/ACC pathway in hypothalamus.
Kai-Rui TANG ; Xiao-Wei MO ; Xing-Yi ZHOU ; Yue-Yue CHEN ; Dong-Dong LIU ; Liang-Liang HE ; Qing-Yu MA ; Xiao-Juan LI ; Jia-Xu CHEN
Journal of Integrative Medicine 2022;20(5):442-452
OBJECTIVE:
Depression and metabolic disorders have overlapping psychosocial and pathophysiological causes. Current research is focused on the possible role of adiponectin in regulating common biological mechanisms. Xiaoyao San (XYS), a classic Chinese medicine compound, has been widely used in the treatment of depression and can alleviate metabolic disorders such as lipid or glucose metabolism disorders. However, the ability of XYS to ameliorate depression-like behavior as well as metabolic dysfunction in mice and the underlying mechanisms are unclear.
METHODS:
An in vivo animal model of depression was established by chronic social defeat stress (CSDS). XYS and fluoxetine were administered by gavage to the drug intervention group. Depression-like behaviors were analyzed by the social interaction test, open field test, forced swim test, and elevated plus maze test. Glucose levels were measured using the oral glucose tolerance test. The involvement of certain molecules was validated by immunofluorescence, histopathology, and Western blotting. In vitro, hypothalamic primary neurons were exposed to high glucose to induce neuronal damage, and the neuroprotective effect of XYS was evaluated by cell counting kit-8 assay. Immunofluorescence and Western blotting were used to evaluate the influences of XYS on adiponectin receptor 1 (AdipoR1), adenosine 5'-monophosphate-activated protein kinase (AMPK), acetyl-coenzyme A carboxylase (ACC) and other related proteins.
RESULTS:
XYS ameliorated CSDS-induced depression-like behaviors and glucose tolerance impairment in mice and increased the level of serum adiponectin. XYS also restored Nissl bodies in hypothalamic neurons in mice that exhibited depression-like behaviors and decreased the degree of neuronal morphological damage. In vivo and in vitro studies indicated that XYS increased the expression of AdipoR1 in hypothalamic neurons.
CONCLUSION
Adiponectin may be a key regulator linking depression and metabolic disorders; regulation of the hypothalamic AdipoR1/AMPK/ACC pathway plays an important role in treatment of depression by XYS.
AMP-Activated Protein Kinases/metabolism*
;
Acetyl-CoA Carboxylase/metabolism*
;
Adiponectin/metabolism*
;
Animals
;
Antidepressive Agents/pharmacology*
;
China
;
Depression/drug therapy*
;
Disease Models, Animal
;
Drugs, Chinese Herbal/therapeutic use*
;
Glucose
;
Hypothalamus/metabolism*
;
Mice
;
Receptors, Adiponectin/metabolism*
3.Medium- and long-chain triglyceride propofol reduces the activity of acetyl-coenzyme A carboxylase in hepatic lipid metabolism in HepG2 and Huh7 cells
Li yuan WANG ; Jing WU ; Ya fen GAO ; Duo mao LIN ; Jun MA
The Korean Journal of Physiology and Pharmacology 2020;24(1):19-26
Medium- and long-chain triglyceride (MCT/LCT) propofol is widely used as an intravenous anesthetic, especially in the intensive care unit. The present study aimed to assess whether MCT/LCT propofol is safe in the hyperlipidemic population for long-term use. Free fatty acids (FFAs) were used to establish high-fat stimulation of HepG2 and Huh7 cells. Subsequently, these cells were treated with propofol at the concentration of 0, 4, or 8 µg/ml for 24 and 48 h. The results indicated that the cell viability was notably decreased when the cells were stimulated with 2 mmol/L FFAs and treated with 12 µg/ml MCT/LCT propofol. Accordingly, we chose 2 mmol/L FFAs along with 4 and 8 µg/ml MCT/LCT propofol for the subsequent experiments. Four and 8 µg/ml MCT/LCT propofol inhibited FFA-induced lipid accumulation in the cells and significantly reversed acetyl coenzyme A carboxylase (ACC) activity. In addition, MCT/LCT propofol not only significantly promoted the phosphorylation of AMPK and ACC, but also reversed the FFA-induced decreased phosphorylation of AMPK and ACC. In conclusion, MCT/LCT propofol reverses the negative effects caused by FFAs in HepG2 and Huh7 cells, indicating that MCT/LCT propofol might positively regulate lipid metabolism.
Acetyl-CoA Carboxylase
;
AMP-Activated Protein Kinases
;
Cell Survival
;
Fatty Acids, Nonesterified
;
Hepatocytes
;
Intensive Care Units
;
Lipid Metabolism
;
Liver
;
Metabolism
;
Phosphorylation
;
Propofol
;
Triglycerides
4.The effects of Brassica juncea L. leaf extract on obesity and lipid profiles of rats fed a high-fat/high-cholesterol diet.
Jae Joon LEE ; Hyun A KIM ; Joomin LEE
Nutrition Research and Practice 2018;12(4):298-306
BACKGROUND/OBJECTIVES: Obesity is a global health problem of significant importance which increases mortality. In place of anti-obesity drugs, natural products are being developed as alternative therapeutic materials. In this study, we investigated the effect of Brassica juncea L. leaf extract (BLE) on fat deposition and lipid profiles in high-fat, high-cholesterol diet (HFC)-induced obese rats. MATERIALS/METHODS: Male Sprague-Dawley rats were divided into four groups (n = 8 per group) according to diet: normal diet group (ND), high-fat/high-cholesterol diet group (HFC), HFC with 3% BLE diet group (HFC-A1), and HFC with 5% BLE diet group (HFC-A2). Each group was fed for 6 weeks. Rat body and adipose tissue weights, serum biochemical parameters, and tissue lipid contents were determined. The expression levels of mRNA and proteins involved in lipid and cholesterol metabolism were determined by reverse transcription polymerase chain reaction and western blot analysis, respectively. RESULTS: The HFC-A2 group showed significantly lower body weight gain and food efficiency ratio than the HFC group. BLE supplementation caused mesenteric, epididymal, and total adipose tissue weights to decrease. The serum levels of triglyceride, total cholesterol, and low-density lipoprotein cholesterol were significantly reduced, and high-density lipoprotein cholesterol was significantly increased in rats fed BLE. These results were related to lower glucose-6-phosphate dehydrogenase, acetyl-coA carboxylase, and fatty acid synthase mRNA expression, and to higher expression of the cholesterol 7α-hydroxylase and low density lipoprotein-receptor, as well as increased protein levels of peroxisome proliferator-activated receptor α. Histological analysis of the liver revealed decreased lipid droplets in HFC rats treated with BLE. CONCLUSIONS: Supplementation of HFC with 3% or 5% BLE inhibited body fat accumulation, improved lipid profiles, and modulated lipogenesis- and cholesterol metabolism-related gene and protein expression.
Acetyl-CoA Carboxylase
;
Adipose Tissue
;
Animals
;
Anti-Obesity Agents
;
Biological Products
;
Blotting, Western
;
Body Weight
;
Brassica*
;
Cholesterol
;
Diet*
;
Diet, High-Fat
;
Global Health
;
Glucosephosphate Dehydrogenase
;
Humans
;
Lipid Droplets
;
Lipoproteins
;
Liver
;
Male
;
Metabolism
;
Mortality
;
Mustard Plant*
;
Obesity*
;
Peroxisomes
;
Polymerase Chain Reaction
;
Rats*
;
Rats, Sprague-Dawley
;
Reverse Transcription
;
RNA, Messenger
;
Triglycerides
;
Weights and Measures
5.Red pepper seed water extract inhibits preadipocyte differentiation and induces mature adipocyte apoptosis in 3T3-L1 cells.
Hwa Jin KIM ; Mi Kyoung YOU ; Young Hyun LEE ; Hyun Jung KIM ; Deepak ADHIKARI ; Hyeon A KIM
Nutrition Research and Practice 2018;12(6):494-502
BACKGROUND/OBJECTIVES: Reducing the number of adipocytes by inducing apoptosis of mature adipocytes as well as suppressing differentiation of preadipocytes plays an important role in preventing obesity. This study examines the anti-adipogenic and pro-apoptotic effect of red pepper seed water extract (RPS) prepared at 4℃ (RPS4) in 3T3-L1 cells. MATERIALS/METHODS: Effect of RPS4 or its fractions on lipid accumulation was determined in 3T3-L1 cells using oil red O (ORO) staining. The expressions of AMP-activated protein kinase (AMPK) and adipogenic associated proteins [peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding proteins α (C/EBP α), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC)] were measured in 3T3-L1 cells treated with RPS4. Apoptosis and the expression of Akt and Bcl-2 family proteins [B-cell lymphoma 2 (Bcl-2), Bcl-2-associated death promoter (Bad), Bcl-2 like protein 4 (Bax), Bal-2 homologous antagonist/killer (Bak)] were measured in mature 3T3-L1 cells treated with RPS4. RESULTS: Treatment of RPS4 (0–75 µg/mL) or its fractions (0–50 µg/mL) for 24 h did not have an apparent cytotoxicity on pre and mature 3T3-L1 cells. RPS4 significantly suppressed differentiation and cellular lipid accumulation by increasing the phosphorylation of AMPK and reducing the expression of PPAR-γ, C/EBP α, SREBP-1c, FAS, and ACC. In addition, all fractions except ethyl acetate fraction significantly suppressed cellular lipid accumulation. RPS4 induced the apoptosis of mature adipocytes by hypophosphorylating Akt, increasing the expression of the pro-apoptotic proteins, Bak, Bax, and Bad, and reducing the expression of the anti-apoptotic proteins, Bcl-2 and p-Bad. CONCLUSIONS: These finding suggest that RPS4 can reduce the numbers as well as the size of adipocytes and might useful for preventing and treating obesity.
3T3-L1 Cells*
;
Acetyl-CoA Carboxylase
;
Adipocytes*
;
Adipogenesis
;
AMP-Activated Protein Kinases
;
Apoptosis Regulatory Proteins
;
Apoptosis*
;
Capsicum*
;
Humans
;
Lipid Metabolism
;
Lymphoma
;
Obesity
;
Phosphorylation
;
Sterol Regulatory Element Binding Protein 1
;
Water*
6.Anti-diabetic activities of catalpol in db/db mice.
Qinwen BAO ; Xiaozhu SHEN ; Li QIAN ; Chen GONG ; Maoxiao NIE ; Yan DONG
The Korean Journal of Physiology and Pharmacology 2016;20(2):153-160
The objective was to investigate the hypoglycemic action of catalpol in spontaneous diabetes db/db mice. 40 db/db mice were randomly divided into fi ve groups: model control gourp; db/db plus catalpol 40, 80, 120 mg/kg body wt. groups and db/db plus metformin 250 mg/kg group. Age-matched db/m mice were selected as normal control group. The mice were administered with corresponding drugs or solvent by gavage for 4 weeks. The oral glucose tolerance test was carried out at the end of 3rd week. After 4 weeks of treatment, the concentrations of fasting blood glucose (FBG), glycated serum protein (GSP), insulin (INS), triglyceride (TG), total cholesterol (TC) and adiponection (APN) in serum were detected. The protein expressions of phosphorylation-AMPKalpha1/2 in liver, phosphorylation-AMPKalpha1/2 and glucose transporter-4 (GLUT-4) in skeletal muscle and adipose tissues were detected by western blot. Real time RT-PCR was used to detect the mRNA expressions of acetyl-CoA carboxylase (ACC) and Hydroxymethyl glutaric acid acyl CoA reductase (HMGCR) in liver. Our results showed that catalpol could significantly improve the insulin resistance, decrease the serum concentrations of INS, GSP, TG, and TC. The concentrations of APN in serum, the protein expression of phosphorylation-AMPKalpha1/2 in liver, phosphorylation-AMPKalpha1/2 and GLUT-4 in peripheral tissue were increased. Catalpol could also down regulate the mRNA expressions of ACC and HMGCR in liver. In conclusion, catalpol ameliorates diabetes in db/db mice. It has benefi t eff ects against lipid/glucose metabolism disorder and insulin resistance. The mechanism may be related to up-regulating the expression of phosphorylation-AMPKalpha1/2.
Acetyl-CoA Carboxylase
;
Acyl Coenzyme A
;
AMP-Activated Protein Kinases
;
Animals
;
Blood Glucose
;
Blotting, Western
;
Cholesterol
;
Fasting
;
Glucose
;
Glucose Tolerance Test
;
Insulin
;
Insulin Resistance
;
Liver
;
Metabolism
;
Metformin
;
Mice*
;
Muscle, Skeletal
;
Oxidoreductases
;
RNA, Messenger
;
Triglycerides
7.Baicalin attenuates high fat diet-induced insulin resistance and ectopic fat storage in skeletal muscle, through modulating the protein kinase B/Glycogen synthase kinase 3 beta pathway.
You-Li XI ; Hong-Xia LI ; Chen CHEN ; Ya-Qun LIU ; Hong-Mei LV ; Shi-Qi DONG ; Er-Fei LUO ; Ming-Bo GU ; Hua LIU
Chinese Journal of Natural Medicines (English Ed.) 2016;14(1):48-55
Insulin resistance is the pathophysiological basis of many diseases. Overcoming early insulin resistance highly significant in prevention diabetes, non-alcoholic fatty liver, and atherosclerosis. The present study aimed at evaluating the therapeutic effects of baicalin on insulin resistance and skeletal muscle ectopic fat storage in high fat diet-induced mice, and exploring the potential molecular mechanisms. Insulin resistance in mice was induced with a high fat diet for 16 weeks. Animals were then treated with three different doses of baicalin (100, 200, and 400 mg·kg(-1)·d(-1)) for 14 weeks. Fasting blood glucose, fasting serum insulin, glucose tolerance test (GTT), insulin tolerance test (ITT), and skeletal muscle lipid deposition were measured. Additionally, the AMP-activated protein kinase/acetyl-CoA carboxylase and protein kinase B/Glycogen synthase kinase 3 beta pathways in skeletal muscle were further evaluated. Baicalin significantly reduced the levels of fasting blood glucose and fasting serum insulin and attenuated high fat diet induced glucose tolerance and insulin tolerance. Moreover, insulin resistance was significantly reversed. Pathological analysis revealed baicalin dose-dependently decreased the degree of the ectopic fat storage in skeletal muscle. The properties of baicalin were mediated, at least in part, by inhibition of the AMPK/ACC pathway, a key regulator of de novo lipogenesis and activation of the Akt/GSK-3β pathway, a key regulator of Glycogen synthesis. These data suggest that baicalin, at dose up to 400 mg·kg(-1)·d(-1), is safe and able to attenuate insulin resistance and skeletal muscle ectopic fat storage, through modulating the skeletal muscle AMPK/ACC pathway and Akt/GSK-3β pathway.
AMP-Activated Protein Kinases
;
metabolism
;
Acetyl-CoA Carboxylase
;
metabolism
;
Adipose Tissue
;
metabolism
;
Animals
;
Diet, High-Fat
;
Flavonoids
;
pharmacology
;
Glycogen Synthase Kinase 3 beta
;
physiology
;
Insulin Resistance
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Muscle, Skeletal
;
metabolism
;
Proto-Oncogene Proteins c-akt
;
physiology
;
Signal Transduction
;
physiology
8.The effects of black garlic (Allium satvium) extracts on lipid metabolism in rats fed a high fat diet.
Ae Wha HA ; Tian YING ; Woo Kyoung KIM
Nutrition Research and Practice 2015;9(1):30-36
BACKGROUD/OBEJECTIVES: The mechanism of how black garlic effects lipid metabolism remains unsolved. Therefore, the objectives of this study were to determine the effects of black garlic on lipid profiles and the expression of related genes in rats fed a high fat diet. MATERIALS/METHODS: Thirty-two male Sqrague-Dawley rats aged 4 weeks were randomly divided into four groups (n=8) and fed the following diets for 5 weeks: normal food diet, (NF); a high-fat diet (HF); and a high-fat diet + 0.5% or 1.5% black garlic extract (HFBG0.5 or HFBG1.5). Body weights and blood biochemical parameters, including lipid profiles, and expressions of genes related to lipid metabolism were determined. RESULTS: Significant differences were observed in the final weights between the HFBG1.5 and HF groups. All blood biochemical parameters measured in the HFBG1.5 group showed significantly lower values than those in the HF group. Significant improvements of the plasama lipid profiles as well as fecal excretions of total lipids and triglyceride (TG) were also observed in the HFBG1.5 group, when compared to the HF diet group. There were significant differences in the levels of mRNA of sterol regulatory element binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and glucose-6-phosphate dehydrogenase (G6PDH) in the HFBG1.5 group compared to the HF group. In addition, the hepatic expression of (HMG-CoA) reductase and Acyl-CoA cholesterol acyltransferase (ACAT) mRNA was also significantly lower than the HF group. CONCLUSIONS: Consumption of black garlic extract lowers SREBP-1C mRNA expression, which causes downregulation of lipid and cholestrol metahbolism. As a result, the blood levels of total lipids, TG, and cholesterol were decreased.
Acetyl-CoA Carboxylase
;
Animals
;
Body Weight
;
Cholesterol
;
Diet
;
Diet, High-Fat*
;
Down-Regulation
;
Garlic*
;
Glucosephosphate Dehydrogenase
;
Humans
;
Lipid Metabolism*
;
Male
;
Oxidoreductases
;
Rats*
;
RNA, Messenger
;
Sterol O-Acyltransferase
;
Sterol Regulatory Element Binding Protein 1
;
Triglycerides
;
Weights and Measures
9.Betaine Alleviates Hypertriglycemia and Tau Hyperphosphorylation in db/db Mice.
Ga Young JUNG ; Sae Bom WON ; Juhae KIM ; Sookyoung JEON ; Anna HAN ; Young Hye KWON
Toxicological Research 2013;29(1):7-14
Betaine supplementation has been shown to alleviate altered glucose and lipid metabolism in mice fed a high-fat diet or a high-sucrose diet. We investigated the beneficial effects of betaine in diabetic db/db mice. Alleviation of endoplasmic reticulum (ER) and oxidative stress was also examined in the livers and brains of db/db mice fed a betaine-supplemented diet. Male C57BL/KsJ-db/db mice were fed with or without 1% betaine for 5 wk (referred to as the db/db-betaine group and the db/db group, respectively). Lean non-diabetic db/+ mice were used as the control group. Betaine supplementation significantly alleviated hyperinsulinemia in db/db mice. Betaine reduced hepatic expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha, a major transcription factor involved in gluconeogenesis. Lower serum triglyceride concentrations were also observed in the db/db-betaine group compared to the db/db group. Betaine supplementation induced hepatic peroxisome proliferator-activated receptor alpha and carnitine palmitoyltransferase 1a mRNA levels, and reduced acetyl-CoA carboxylase activity. Mice fed a betaine-supplemented diet had increased total glutathione concentrations and catalase activity, and reduced lipid peroxidation levels in the liver. Furthermore, betaine also reduced ER stress in liver and brain. c-Jun N-terminal kinase activity and tau hyperphosphorylation levels were lower in db/db mice fed a betaine-supplemented diet, compared to db/db mice. Our findings suggest that betaine improves hyperlipidemia and tau hyperphosphorylation in db/db mice with insulin resistance by alleviating ER and oxidative stress.
Acetyl-CoA Carboxylase
;
Animals
;
Betaine
;
Brain
;
Carnitine O-Palmitoyltransferase
;
Catalase
;
Diet
;
Diet, High-Fat
;
Endoplasmic Reticulum
;
Gluconeogenesis
;
Glucose
;
Glutathione
;
Humans
;
Hyperinsulinism
;
Hyperlipidemias
;
Insulin Resistance
;
JNK Mitogen-Activated Protein Kinases
;
Lipid Metabolism
;
Lipid Peroxidation
;
Liver
;
Male
;
Mice
;
Oxidative Stress
;
PPAR alpha
;
PPAR gamma
;
RNA, Messenger
;
Transcription Factors
10.The effect of fucoxanthin rich power on the lipid metabolism in rats with a high fat diet.
Nutrition Research and Practice 2013;7(4):287-293
This study determined the effects of fucoxanthin on gene expressions related to lipid metabolism in rats with a high-fat diet. Rats were fed with normal fat diet (NF, 7% fat) group, high fat diet group (HF, 20% fat), and high fat with 0.2% fucoxanthin diet group (HF+Fxn) for 4 weeks. Body weight changes and lipid profiles in plasma, liver, and feces were determined. The mRNA expressions of transcriptional factors such as sterol regulatory element binding protein (SREBP)-1c, Carnitine palmitoyltransferase-1 (CPT1), Cholesterol 7alpha-hydroxylase1 (CYP7A1) as well as mRNA expression of several lipogenic enzymes were determined. Fucoxanthin supplements significantly increased plasma high density lipoprotein (HDL) concentration (P < 0.05). The hepatic total lipids, total cholesterols, and triglycerides were significantly decreased while the fecal excretions of total lipids, cholesterol, and triglycerides were significantly increased in HF+Fxn group (P < 0.05). The mRNA expression of hepatic Acetyl-CoA carboxylase (ACC), Fatty acid synthase (FAS), and Glucose-6-phosphate dehydrogenase (G6PDH) as well as SREBP-1C were significantly lower in HF+Fxn group compared to the HF group (P < 0.05). The hepatic mRNA expression of Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) and Acyl-CoA cholesterol acyltransferase (ACAT) were significantly low while lecithin-cholesterol acyltransferase (LCAT) was significantly high in the HF+Fxn group (P < 0.05). There was significant increase in mRNA expression of CPT1 and CYP7A1 in the HF+Fxn group, compared to the HF group (P < 0.05). In conclusion, consumption of fucoxanthin is thought to be effective in improving lipid and cholesterol metabolism in rats with a high fat diet.
Acetyl-CoA Carboxylase
;
Animals
;
Body Weight Changes
;
Carnitine
;
Carrier Proteins
;
Cholesterol
;
Coenzyme A
;
Diet
;
Diet, High-Fat
;
Fatty Acid Synthetase Complex
;
Feces
;
Gene Expression
;
Glucosephosphate Dehydrogenase
;
Lipid Metabolism
;
Lipogenesis
;
Lipoproteins
;
Liver
;
Plasma
;
Rats
;
RNA, Messenger
;
Sterol O-Acyltransferase
;
Sterol Regulatory Element Binding Protein 1
;
Triglycerides
;
Xanthophylls

Result Analysis
Print
Save
E-mail