1.Engineering the precursor supply pathway in Streptomyces gilvosporeus for overproduction of natamycin.
Dezhen KONG ; Hao LI ; Xiaojie LI ; Zhoujie XIE ; Hao LIU
Chinese Journal of Biotechnology 2022;38(12):4630-4643
Natamycin is a safe and efficient antimycotics which is widely used in food and medicine industry. The polyene macrolide compound, produced by several bacterial species of the genus Streptomyces, is synthesized by type Ⅰ polyketide synthases using acetyl-CoA, malonyl-CoA, and methylmalonyl-CoA as substrates. In this study, four pathways potentially responsible for the supply of the three precursors were evaluated to identify the effective precursor supply pathway which can support the overproduction of natamycin in Streptomyces gilvosporeus, a natamycin-producing wild-type strain. The results showed that over-expressing acetyl-CoA synthetase and methylmalonyl-CoA mutase increased the yield of natamycin by 44.19% and 20.51%, respectively, compared with the wild type strain under shake flask fermentation. Moreover, the yield of natamycin was increased by 66.29% compared with the wild-type strain by co-overexpression of acetyl-CoA synthetase and methylmalonyl-CoA mutase. The above findings will facilitate natamycin strain improvement as well as development of strains for producing other polyketide compounds.
Natamycin/metabolism*
;
Methylmalonyl-CoA Mutase/metabolism*
;
Acetyl Coenzyme A/metabolism*
;
Streptomyces/genetics*
;
Polyketide Synthases/metabolism*
2.Nicorandil alleviated cardiac hypoxia/reoxygenation-induced cytotoxicity via upregulating ketone body metabolism and ACAT1 activity.
The Korean Journal of Physiology and Pharmacology 2019;23(1):37-45
To study the effect of nicorandil pretreatment on ketone body metabolism and Acetyl-CoA acetyltransferase (ACAT1) activity in hypoxia/reoxygenation (H/R)-induced cardiomyocytes. In our study, we applied H9c2 cardiomyocytes cell line to evaluate the cardioprotective effects of nicorandil. We detected mitochondrial viability, cellular apoptosis, reactive oxygen species (ROS) production and calcium overloading in H9c2 cells that exposed to H/R-induced cytotoxicity. Then we evaluated whether nicorandil possibly regulated ketone body, mainly β-hydroxybutyrate (BHB) and acetoacetate (ACAC), metabolism by regulating ACAT1 and Succinyl-CoA:3-keto-acid coenzyme A transferase 1 (OXCT1) protein and gene expressions. Nicorandil protected H9c2 cardiomyocytes against H/R-induced cytotoxicity dose-dependently by mitochondria-mediated anti-apoptosis pathway. Nicorandil significantly decreased cellular apoptotic rate and enhanced the ratio of Bcl-2/Bax expressions. Further, nicorandil decreased the production of ROS and alleviated calcium overloading in H/R-induced H9c2 cells. In crucial, nicorandil upregulated ACAT1 and OXCT1 protein expressions and either of their gene expressions, contributing to increased production of cellular BHB and ACAC. Nicorandil alleviated cardiomyocytes H/R-induced cytotoxicity through upregulating ACAT1/OXCT1 activity and ketone body metabolism, which might be a potential mechanism for emerging study of nicorandil and other K(ATP) channel openers.
Acetyl-CoA C-Acetyltransferase
;
Apoptosis
;
Calcium
;
Cell Line
;
Coenzyme A
;
Gene Expression
;
Metabolism*
;
Myocytes, Cardiac
;
Nicorandil*
;
Reactive Oxygen Species
;
Transferases
3.The Role of N-Acetyl Transferases on Isoniazid Resistance from Mycobacterium tuberculosis and Human: An In Silico Approach.
Ameeruddin Nusrath UNISSA ; Swathi SUKUMAR ; Luke Elizabeth HANNA
Tuberculosis and Respiratory Diseases 2017;80(3):255-264
BACKGROUND: N-acetyl transferase (NAT) inactivates the pro-drug isoniazid (INH) to N-acetyl INH through a process of acetylation, and confers low-level resistance to INH in Mycobacterium tuberculosis (MTB). Similar to NAT of MTB, NAT2 in humans performs the same function of acetylation. Rapid acetylators, may not respond to INH treatment efficiently, and could be a potential risk factor, for the development of INH resistance in humans. METHODS: To understand the contribution of NAT of MTB and NAT2 of humans in developing INH resistance using in silico approaches, in this study, the wild type (WT) and mutant (MT)-NATs of MTB, and humans, were modeled and docked, with substrates and product (acetyl CoA, INH, and acetyl INH). The MT models were built, using templates 4BGF of MTB, and 2PFR of humans. RESULTS: On the basis of docking results of MTB-NAT, it can be suggested that in comparison to the WT, binding affinity of MT-G207R, was found to be lower with acetyl CoA, and higher with acetyl-INH and INH. In case of MT-NAT2 from humans, the pattern of score with respect to acetyl CoA and acetyl-INH, was similar to MT-NAT of MTB, but revealed a decrease in INH score. CONCLUSION: In MTB, MT-NAT revealed high affinity towards acetyl-INH, which can be interpreted as increased formation of acetyl-INH, and therefore, may lead to INH resistance through inactivation of INH. Similarly, in MT-NAT2 (rapid acetylators), acetylation occurs rapidly, serving as a possible risk factor for developing INH resistance in humans.
Acetyl Coenzyme A
;
Acetylation
;
Computer Simulation*
;
Humans*
;
Isoniazid*
;
Mycobacterium tuberculosis*
;
Mycobacterium*
;
Risk Factors
;
Transferases*
4.High maysin corn silk extract reduces body weight and fat deposition in C57BL/6J mice fed high-fat diets.
Eun Young LEE ; Sun Lim KIM ; Hyeon Jung KANG ; Myung Hwan KIM ; Ae Wha HA ; Woo Kyoung KIM
Nutrition Research and Practice 2016;10(6):575-582
BACKGROUNG/OBJECTIVES: The study was performed to investigate the effects and mechanisms of action of high maysin corn silk extract on body weight and fat deposition in experimental animals. MATERIALS/METHODS: A total of 30 male C57BL/6J mice, 4-weeks-old, were purchased and divided into three groups by weight using a randomized block design. The normal-fat (NF) group received 7% fat (diet weight basis), the high-fat (HF) group received 25% fat and 0.5% cholesterol, and the high-fat corn silk (HFCS) group received high-fat diet and high maysin corn silk extract at 100 mg/kg body weight through daily oral administration. Body weight and body fat were measured, and mRNA expression levels of proteins involved in adipocyte differentiation, fat accumulation, fat synthesis, lipolysis, and fat oxidation in adipose tissue and the liver were measured. RESULTS: After experimental diet intake for 8 weeks, body weight was significantly lower in the HFCS group compared to the HF group (P < 0.05), and kidney fat and epididymal fat pad weights were significantly lower in the HFCS group compared to the HF group (P < 0.05). In the HFCS group, CCAAT/enhancer binding protein-β, peroxisome proliferator-activated receptor-γ1 (PPAR-γ1), and PPAR-γ2 mRNA expression levels were significantly reduced (P < 0.05) in the epididymal fat pad, whereas cluster of differentiation 36, lipoprotein lipase, acetyl-CoA carboxylase-1, sterol regulatory element binding protein-1c, pyruvate dehydrogenase kinase, isozyme-4, glucose-6-phosphate dehydrogenase, and stearoyl-CoA desaturase-1 mRNA expression levels were significantly decreased in liver and adipose tissues (P < 0.05). In the HFCS group, mRNA expression levels of AMP-activated protein kinase, hormone-sensitive lipase, and carnitine palmitoyltransferase-1 were elevated (P < 0.05). CONCLUSIONS: It can be concluded that high maysin corn silk extract inhibits expression of genes involved in adipocyte differentiation, fat accumulation, and fat synthesis as well as promotes expression of genes involved in lipolysis and fat oxidation, further inhibiting body fat accumulation and body weight elevation in experimental animals.
Acetyl Coenzyme A
;
Adipocytes
;
Adipose Tissue
;
Administration, Oral
;
AMP-Activated Protein Kinases
;
Animals
;
Body Weight*
;
Carnitine
;
Cholesterol
;
Diet
;
Diet, High-Fat*
;
Glucosephosphate Dehydrogenase
;
Humans
;
Kidney
;
Lipolysis
;
Lipoprotein Lipase
;
Liver
;
Male
;
Mice*
;
Oxidoreductases
;
Peroxisomes
;
Phosphotransferases
;
Pyruvic Acid
;
RNA, Messenger
;
Silk*
;
Sterol Esterase
;
Weights and Measures
;
Zea mays*
5.Anti-diabetic activities of catalpol in db/db mice.
Qinwen BAO ; Xiaozhu SHEN ; Li QIAN ; Chen GONG ; Maoxiao NIE ; Yan DONG
The Korean Journal of Physiology and Pharmacology 2016;20(2):153-160
The objective was to investigate the hypoglycemic action of catalpol in spontaneous diabetes db/db mice. 40 db/db mice were randomly divided into fi ve groups: model control gourp; db/db plus catalpol 40, 80, 120 mg/kg body wt. groups and db/db plus metformin 250 mg/kg group. Age-matched db/m mice were selected as normal control group. The mice were administered with corresponding drugs or solvent by gavage for 4 weeks. The oral glucose tolerance test was carried out at the end of 3rd week. After 4 weeks of treatment, the concentrations of fasting blood glucose (FBG), glycated serum protein (GSP), insulin (INS), triglyceride (TG), total cholesterol (TC) and adiponection (APN) in serum were detected. The protein expressions of phosphorylation-AMPKalpha1/2 in liver, phosphorylation-AMPKalpha1/2 and glucose transporter-4 (GLUT-4) in skeletal muscle and adipose tissues were detected by western blot. Real time RT-PCR was used to detect the mRNA expressions of acetyl-CoA carboxylase (ACC) and Hydroxymethyl glutaric acid acyl CoA reductase (HMGCR) in liver. Our results showed that catalpol could significantly improve the insulin resistance, decrease the serum concentrations of INS, GSP, TG, and TC. The concentrations of APN in serum, the protein expression of phosphorylation-AMPKalpha1/2 in liver, phosphorylation-AMPKalpha1/2 and GLUT-4 in peripheral tissue were increased. Catalpol could also down regulate the mRNA expressions of ACC and HMGCR in liver. In conclusion, catalpol ameliorates diabetes in db/db mice. It has benefi t eff ects against lipid/glucose metabolism disorder and insulin resistance. The mechanism may be related to up-regulating the expression of phosphorylation-AMPKalpha1/2.
Acetyl-CoA Carboxylase
;
Acyl Coenzyme A
;
AMP-Activated Protein Kinases
;
Animals
;
Blood Glucose
;
Blotting, Western
;
Cholesterol
;
Fasting
;
Glucose
;
Glucose Tolerance Test
;
Insulin
;
Insulin Resistance
;
Liver
;
Metabolism
;
Metformin
;
Mice*
;
Muscle, Skeletal
;
Oxidoreductases
;
RNA, Messenger
;
Triglycerides
6.Pyruvate Dehydrogenase Kinases: Therapeutic Targets for Diabetes and Cancers.
Diabetes & Metabolism Journal 2015;39(3):188-197
Impaired glucose homeostasis is one of the risk factors for causing metabolic diseases including obesity, type 2 diabetes, and cancers. In glucose metabolism, pyruvate dehydrogenase complex (PDC) mediates a major regulatory step, an irreversible reaction of oxidative decarboxylation of pyruvate to acetyl-CoA. Tight control of PDC is critical because it plays a key role in glucose disposal. PDC activity is tightly regulated using phosphorylation by pyruvate dehydrogenase kinases (PDK1 to 4) and pyruvate dehydrogenase phosphatases (PDP1 and 2). PDKs and PDPs exhibit unique tissue expression patterns, kinetic properties, and sensitivities to regulatory molecules. During the last decades, the up-regulation of PDKs has been observed in the tissues of patients and mammals with metabolic diseases, which suggests that the inhibition of these kinases may have beneficial effects for treating metabolic diseases. This review summarizes the recent advances in the role of specific PDK isoenzymes on the induction of metabolic diseases and describes the effects of PDK inhibition on the prevention of metabolic diseases using pharmacological inhibitors. Based on these reports, PDK isoenzymes are strong therapeutic targets for preventing and treating metabolic diseases.
Acetyl Coenzyme A
;
Decarboxylation
;
Diabetes Mellitus, Type 2
;
Glucose
;
Homeostasis
;
Humans
;
Isoenzymes
;
Mammals
;
Metabolic Diseases
;
Metabolism
;
Obesity
;
Oxidoreductases*
;
Phosphoric Monoester Hydrolases
;
Phosphorylation
;
Phosphotransferases*
;
Pyruvate Dehydrogenase Complex
;
Pyruvic Acid*
;
Risk Factors
;
Up-Regulation
7.The Role of Pyruvate Dehydrogenase Kinase in Diabetes and Obesity.
Diabetes & Metabolism Journal 2014;38(3):181-186
The pyruvate dehydrogenase complex (PDC) is an emerging target for the treatment of metabolic syndrome. To maintain a steady-state concentration of adenosine triphosphate during the feed-fast cycle, cells require efficient utilization of fatty acid and glucose, which is controlled by the PDC. The PDC converts pyruvate, coenzyme A (CoA), and oxidized nicotinamide adenine dinucleotide (NAD+) into acetyl-CoA, reduced form of nicotinamide adenine dinucleotide (NADH), and carbon dioxide. The activity of the PDC is up- and down-regulated by pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase, respectively. In addition, pyruvate is a key intermediate of glucose oxidation and an important precursor for the synthesis of glucose, glycerol, fatty acids, and nonessential amino acids.
Acetyl Coenzyme A
;
Adenosine Triphosphate
;
Amino Acids
;
Carbon Dioxide
;
Coenzyme A
;
Diabetes Mellitus
;
Fatty Acids
;
Glucose
;
Glycerol
;
NAD
;
Obesity*
;
Oxidoreductases*
;
Phosphotransferases*
;
Pyruvate Dehydrogenase (Lipoamide)-Phosphatase
;
Pyruvate Dehydrogenase Complex
;
Pyruvic Acid*
8.Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis.
Clinical and Molecular Hepatology 2013;19(3):210-215
Liver plays a central role in the biogenesis of major metabolites including glucose, fatty acids, and cholesterol. Increased incidence of obesity in the modern society promotes insulin resistance in the peripheral tissues in humans, and could cause severe metabolic disorders by inducing accumulation of lipid in the liver, resulting in the progression of non-alcoholic fatty liver disease (NAFLD). NAFLD, which is characterized by increased fat depots in the liver, could precede more severe diseases such as non-alcoholic steatohepatitis (NASH), cirrhosis, and in some cases hepatocellular carcinoma. Accumulation of lipid in the liver can be traced by increased uptake of free fatty acids into the liver, impaired fatty acid beta oxidation, or the increased incidence of de novo lipogenesis. In this review, I would like to focus on the roles of individual pathways that contribute to the hepatic steatosis as a precursor for the NAFLD.
Acetyl Coenzyme A/metabolism
;
Fatty Acids/metabolism
;
Fatty Liver/*metabolism/pathology
;
Humans
;
Lipogenesis
;
Mitochondria/metabolism
;
Triglycerides/metabolism
9.The effect of fucoxanthin rich power on the lipid metabolism in rats with a high fat diet.
Nutrition Research and Practice 2013;7(4):287-293
This study determined the effects of fucoxanthin on gene expressions related to lipid metabolism in rats with a high-fat diet. Rats were fed with normal fat diet (NF, 7% fat) group, high fat diet group (HF, 20% fat), and high fat with 0.2% fucoxanthin diet group (HF+Fxn) for 4 weeks. Body weight changes and lipid profiles in plasma, liver, and feces were determined. The mRNA expressions of transcriptional factors such as sterol regulatory element binding protein (SREBP)-1c, Carnitine palmitoyltransferase-1 (CPT1), Cholesterol 7alpha-hydroxylase1 (CYP7A1) as well as mRNA expression of several lipogenic enzymes were determined. Fucoxanthin supplements significantly increased plasma high density lipoprotein (HDL) concentration (P < 0.05). The hepatic total lipids, total cholesterols, and triglycerides were significantly decreased while the fecal excretions of total lipids, cholesterol, and triglycerides were significantly increased in HF+Fxn group (P < 0.05). The mRNA expression of hepatic Acetyl-CoA carboxylase (ACC), Fatty acid synthase (FAS), and Glucose-6-phosphate dehydrogenase (G6PDH) as well as SREBP-1C were significantly lower in HF+Fxn group compared to the HF group (P < 0.05). The hepatic mRNA expression of Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) and Acyl-CoA cholesterol acyltransferase (ACAT) were significantly low while lecithin-cholesterol acyltransferase (LCAT) was significantly high in the HF+Fxn group (P < 0.05). There was significant increase in mRNA expression of CPT1 and CYP7A1 in the HF+Fxn group, compared to the HF group (P < 0.05). In conclusion, consumption of fucoxanthin is thought to be effective in improving lipid and cholesterol metabolism in rats with a high fat diet.
Acetyl-CoA Carboxylase
;
Animals
;
Body Weight Changes
;
Carnitine
;
Carrier Proteins
;
Cholesterol
;
Coenzyme A
;
Diet
;
Diet, High-Fat
;
Fatty Acid Synthetase Complex
;
Feces
;
Gene Expression
;
Glucosephosphate Dehydrogenase
;
Lipid Metabolism
;
Lipogenesis
;
Lipoproteins
;
Liver
;
Plasma
;
Rats
;
RNA, Messenger
;
Sterol O-Acyltransferase
;
Sterol Regulatory Element Binding Protein 1
;
Triglycerides
;
Xanthophylls
10.Mutation analysis of a family with 2-Methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency.
Jian-bo SHU ; Yu-qin ZHANG ; Shu-zhen JIANG ; Chun-hua ZHANG ; Ying-tao MENG ; Hong WANG ; Li SONG
Chinese Journal of Pediatrics 2013;51(10):783-786
OBJECTIVEThe aim of this study was to explore the genetic features of a family with 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency (MHBDD) which may provide the basis for the diagnosis and genetic counseling.
METHODClinical data of the proband was collected, total RNA and genomic DNA were extracted from the peripheral blood. The whole coding region of the ACAT1 gene was amplified by RT-PCR. 5' noncoding region of the ACAT1 gene and all 6 exons and flanking intron regions of the HADH2 gene were amplified by PCR. All amplification products were directly sequenced and compared with the reference sequence.
RESULT(1) The patient was a one-year-old boy who presented with psychomotor retardation and astasia when he was admitted to the hospital. Biochemical test revealed slight hyperlactatemia (3.19 mmol/L) and magnetic resonance imaging showed delayed myelination. 2-Methylacetoacetyl-CoA thiolase deficiency was suggested by gas chromatography-mass spectrometry. (2) There was no mutation in the ACAT1 gene and a hemizygous missense mutation c.388C > T was found in the 4 exon of the HADH2 gene which resulted in p. R130C. Proband's mother was the heterozygote and the father was normal.
CONCLUSIONThis is the first report on MHBDD patient and HADH2 mutation in China. p.R130C is responsible for the pathogenesis of the disease in the infant.
3-Hydroxyacyl CoA Dehydrogenases ; genetics ; Acetyl-CoA C-Acetyltransferase ; deficiency ; genetics ; Acyl Coenzyme A ; genetics ; metabolism ; Base Sequence ; DNA Mutational Analysis ; Dyskinesias ; Heterozygote ; Humans ; Infant ; Intellectual Disability ; enzymology ; genetics ; pathology ; Lipid Metabolism, Inborn Errors ; genetics ; pathology ; Male ; Mental Retardation, X-Linked ; Mutation, Missense ; Pedigree ; Reverse Transcriptase Polymerase Chain Reaction

Result Analysis
Print
Save
E-mail